CSCI44B Programming Perl II

Lecture 7

4/24/2003

8 Perl and Databases II: Flat File Databases continued

8.1 Multi-Level DBM

As we saw in the last lecture, DBM's are great for managing our data if it fits the key-value model where the keys and values are simple scalars.

But sometimes our data is a little more complicated than that. For example, the "value" in the key-value pair might a list of items (array) or even a collection of key-value pairs (hash). Normally we can't store an array or hash in an individual "value" slot in a DBM database. However, if we create a multi-level DBM with the MLDBM module, we can.

8.2 Quick Review: Nested Hashes and Arrays

To understand how to use a multi-level array, you need to review CSCI44A's Lecture 14 on nested arrays and hashes. I'll review them briefly here but I'll assume you are familiar with the Lecture 14 material.

If you have a hash, you can store arrays as individual values but you have to do it with array references, not arrays. Here are some examples of how to do it and how not to do it.

#

This is an ordinary hash. It's not tied to a database.

#

%hash = ();

#

An array we want to store in one key-value pair.

The key will be 'nums'.

#

@a = ("one", "two", "three");

#

This doesn't work the way you want.

This will set the value to '3', not "one", "two",

"three". Can you answer why?

#

$hash{'nums'} = @a;

#

This doesn't work the way you want either.

#

$hash{'nums'} = ("one", "two", "three");

#

This works. The value is an array reference.

#

$hash{'nums'} = \@a;

#

This works too.

#

$aRef = \@a;

$hash{'nums'} = $aRef;

#

Using an anonymous array also works. These two lines

are equivalent.

#

$hash{'nums'} = ["one", "two", "three"];

$hash{'nums'} = [@a];
You can access the array elements using this syntax.

#

Both lines print out 'one'

#

print $hash{'nums'}[0];

print $hash{'nums'}->[0];

#

Prints out 'onetwothree'

#

print @{$hash{'nums'}};
You can also store hashes within a hash.

%dogs = ();

#

Here is one hash that you want to store in the dogs

hash.

#

%labrador = (

name = "Labrador Retriever",

color => "Black, chocolate, or yellow",

adult_weight => "90 pounds",

intelligence => "high",

disposition => "affectionate"

);

#

One way to store the %labrador hash.

#

$labradorRef = \%labrador;

$dogs{'labrador'} = $labradorRef;

#

Another way to do the same thing.

#

$dogs{'labrador'} = \%labrador;

#

Lastly, we can store the hash by using the anonymous

hash syntax.

#

$dogs{'labrador'} = {

name => "Labrador Retriever",

color => "Black, chocolate, or yellow",

adult_weight => "90 pounds",

intelligence => "high",

disposition => "affectionate"

};
You can access any value with the right keys.

#

Print out the name of the breed. Both lines

are equivalent.

#

print "Breed:", $dogs{'labrador'}{'name'}, "\n";

print "Breed:", $dogs{'labrador'}->{'name'}, "\n";

#

Print out all of the attributes for the labrador.

#

foreach my $key (sort keys %{$dogs{'labrador'}}) {

print "$key => $dogs{'labrador'}{$key}\n";

}

8.3 Using a Multi-Level DBM

Using a multi-level DBM is almost as easy as a flat file DBM. The following code is the minimum necessary to tie a hash to a multi-level DBM.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'mldbm_demo.dbm';

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR|O_CREAT, 0644;

MLDBM.pm is the Perl module that creates the interface to a multi-level DBM database. It's not a new DBM, however. MLDBM is a module that can take a multi-level hash and reduce it to a single level hash. MLDBM then takes this single level hash and writes it to an ordinary DBM database. Or course MLDBM supports the reverse opration so you can retrieve the multi-level hash from the *.dbm file.

To store the data, MLDBM needs one of the standard DBM libraries. The one that is used is set when you load the MLDBM.pm module. Here we direct the program to use Berkeley_DB.

use MLDBM qw(DB_File);
The tie arguments are the same but make sure the second argument is 'MLDBM' and not 'DB_File'.

Now we are ready to look at a more complete example. In the following code, we have an employee phone directory where the data is stored in a multi-level DBM. In this DBM, we assume everyone is a field engineer and therefore has two phone numbers, an office phone and a company supplied cell phone. The pairs of numbers are stored in an array and the first element of each array is the office number. In this example, we are adding two new employees to the database. Employees are tracked with their unique 5-digit employee number. We use unique employee numbers so we don't have to worry about the situation where we have more than one employee with the same name.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

$emp_67293 = ['510-123-1234', '510-889-5637'];

$emp_42943 = ['415-684-3852', '650-682-1001'];

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

$mldbm{'67293'} = $emp_67293;

$mldbm{'42943'} = $emp_42943;

untie %mldbm;

exit;

The following code uses the above employee directory and prints out the phone numbers of one of the employees.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

print "Enter a 5 digit employee number: ";

my $emp_num = <>;

chomp $emp_num;

if(exists $mldbm{$emp_num})

{

print "Employee $emp_num office number: ",

 $mldbm{$emp_num}[0],".\n";

print "Employee $emp_num cell number: ",

 $mldbm{$emp_num}[1],".\n";

}

untie %mldbm;

exit;

Using an array to store the phone numbers is not really the best way to store phone numbers because we have to assume that every employee will have only two phone numbers and they have exactly one office number and one cell phone number. The existing database can't handle employees that may have more than one office number or no office number at all.

To give the telephone directory more flexibility, it would make more sense to store the numbers for each employee in a hash and use keys that describe the phone number.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

$emp_67293 = {

 'Main Office' => '510-123-1234',

 'Cell' => '510-889-5637'

 };

$emp_42943 = {

 'Main Office' => '415-684-3852',

 'Branch Office' => '408-776-8812',

 'Cell' => '650-682-1001'

 };

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

$mldbm{'67293'} = $emp_67293;

$mldbm{'42943'} = $emp_42943;

untie %mldbm;

exit;

Now we can print out an employees phone numbers without making any assumptions about how many numbers he or she has or what the numbers represent (e.g. office or cell).

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

print "Enter a 5 digit employee number: ";

my $emp_num = <>;

chomp $emp_num;

if(exists $mldbm{$emp_num})

{

 foreach my $num_type (keys %{$mldbm{$emp_num}}) {

 print "Employee $emp_num $num_type: ",

 $mldbm{$emp_num}{$num_type},

 ".\n";

 }

}

untie %mldbm;

exit;

Or employee directory is better but it is still lacking at least one important piece of information. Can you spot it? The names! Our database can tell you someone's number but wouldn't it be nice if it would also tell you his or her name too? You wouldn't want your telephone calls to sound like this, "Good morning 73852, do you have your TPS report ready?"

We can store additional information by nesting our hashes.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

$emp_67293 = {

 'name' => 'Jon Smith',

 'title' => 'Senior Field Engineer',

 'supervisor' => 'Jane Doe',

 'nums' => {

 'Main Office' => '510-123-1234',

 'Cell' => '510-889-5637'

 },

 };

$emp_42943 = {

 'name' => 'Jane Doe',

 'title' => 'Sales Engineer',

 'supervisor' => 'Wacko Jacko',

 'nums' => {

 'Main Office' => '415-684-3852',

 'Branch Office' => '408-776-8812',

 'Cell' => '650-682-1001'

 },

 };

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

$mldbm{'67293'} = $emp_67293;

$mldbm{'42943'} = $emp_42943;

untie %mldbm;

exit;

Here is an example of how you can extract the phone numbers out of this multi-level database.

#!/usr/bin/perl -w

use strict;

use MLDBM qw(DB_File);

use POSIX;

my %mldbm;

my $mldbm_file = 'employee_phonebook.dbm';

tie %mldbm, 'MLDBM', $mldbm_file, O_RDWR, 0 or

die "Unable to open $mldbm_file: $!\n";

print "Enter a 5 digit employee number: ";

my $emp_num = <>;

chomp $emp_num;

#

The print out looks like this:

Phone numbers for: Jack Ryan, Manager

Main Office: 619-573-5862

Cell: 619-566-3434

#

if(exists $mldbm{$emp_num})

{

 print "Phone numbers for: ",

 "$mldbm{$emp_num}{'name'}, ",

 "$mldbm{$emp_num}{'title'} \n";

 foreach my $num_type (keys %{$mldbm{$emp_num}{'nums'}})

 {

 print "$num_type: ",

 $mldbm{$emp_num}{'nums'}{$num_type},

 ".\n";

 }

}

untie %mldbm;

exit;

Page 8 of 8

