CSCI44B Programming Perl II

Lecture 7

4/20/2003

7 Perl and Databases I: Flat File Databases

7.1 Types of databases

Before we start discussing types and uses of databases, let us first define what we mean by the term "database". A database is "a collection of data arranged for ease and speed of search and retrieval". Databases can take on many forms and each has their own advantages and disadvantages. Design considerations include speed, size, ease of maintenance, robustness (maintaining data integrity), sophistication (or complexity) of queries, and cost. Among the many different types of databases available, there are two that will likely satisfy all of your programming needs: flat files databases and relational databases.

Flat file databases usually take the form of key-value pairs. For example, if you had a program that collected people's names and phone numbers and wrote the data to a file with one name and number per line, this file could be called a flat file database. You could easily read in the file to a hash, and given name, you can look up a number. The term "flat" is used because there is no hierarchy to the data. The names aren't (and don't need to be) organized in any particular order and no complex relationships between names or numbers is kept in the database. To facilitate managing flat file databases, there are a few C libraries that have been written to simplify reading and writing to the database. These libraries are generically called DBM (DataBase Manager) libraries and the databases are called DBM databases. The Perl modules that interface to these C libraries are called DBM modules. When we talk about flat file databases in these lectures, we are specifically referring to DBM databases.

There are several flavors of the DBM libraries and most Unix computers will have more than one available for you to use. The most popular is Berkeley DB, sometimes called bsd-db. Probably the second most popular is gdbm, the GNU dbm.

Relational databases use a sophisticated set model to organize data. Relational databases are best for data that doesn't fit the simple key-value relationship. A common example for data that a relational database handles well is the book industry. Imagine you are maintaining a catalog of books for Amazon.com's search engine. You have a set of authors (keys) and books (values). If each author only writes one book, and each book can only have one author, you can use a simple DBM database. In reality, however, there will be many authors that have written several books, and many books will have more than one author. If all this data with these relationships is stored in a DBM database, many names and book titles will appear multiple times. This redundancy makes queries difficult and makes data corruption more likely.
 Relational databases simplify storing, retrieving, and updating data with complicated relationships by organizing the data into tables, which is like spreading the data among multiple DBM databases. A discussion of how relational databases are implemented is left for a future lecture. Relational databases are very popular for managing large amounts of data. Well known relational databases include MySQL, SQL Server, DB2, Informix, Sybase, and Oracle. Relational databases and their associated software are frequently called RDBMS for Relational DataBase Management Servers.

7.2 Which Type of Database to Choose?

There are pros and cons when selecting one of the two aforementioned databases. Here is a summary of the most important or obvious points.

DBM databases - Pros

· Free in terms of cost and licenses - Berkeley DB
, the best performing and probably the most popular DBM database is Open Source. This means you can get the source code for free and use it in your own company without paying anyone. You can include it in any products you sell but then you'll have to pay a licensing fee.

· Access speed - The code to manage the database is linked into the code of your application. This makes queries much faster than RDBM databases.

· Memory size - Because DBM databases are relatively simple the code needed to manage the database is very small. This is especially important if you need a database on an embedded device or PDA. The Berkeley DB code is less than 300 kilobytes.

· Very easy to program - DBM databases have a hash like interface (at least in Perl). Reading and writing data in a DBM database is like reading and writing hash key-value pairs in Perl.

· Very easy to create and maintain - You don't need to hire a DBA
, take expensive courses, or read a room full of books create and maintain a DBM database.

DBM databases - Cons

· Only useful for certain types of data - DBM databases only work well if the data easily maps to simple key-value pairs.

· Database size is limited - Because all of the data is laid out in one large text file, searching is sequential. This means that as the database grows, data retrieval slows down. Depending on your requirements, access maybe too slow. If speed is not a concern, Berkeley DB can support up to 256 terabytes.

RDBM databases - Pros

· Manages complicated relations - If the relationship between data elements is too complicated to map to simple key-value pairs, you almost certainly need to resort to a relational database.

· More sophisticated queries - All popular RDBM databases support SQL, a database query language that features English like statements.

· Robust - RDBM databases are much more resistant to data corruption compared to DBM databases.

· Scalable - RDBM databases can handle much larger data sets than DBM databases and still maintain good performance.

· Free in terms of cost and licenses - Virtually all of the RDBM databases worth using are commercial products. However, MySQL
 is an open source relational database that has become very popular in commercial environments (Yahoo! a big Oracle customer, is using MySQL to manage Yahoo! Finance).

RDBM databases - Cons

· Cost - Except for MySQL (which does lack some advanced features present in commercial databases), all other RDBMS's cost money, and more often than not tons of money. How do you think Oracle got so big?

· More difficult to program - To store and retrieve data, you have to use SQL, a programming language in it's own right. Programming SQL is not anymore difficult than Perl, perhaps even easier, but it means that you have to know two computer languages, SQL and Perl.

· Even more difficult to set up - Setting up a RDBM database is even harder as it requires knowledge of relational database theory and a good understanding of the data that will populate the data. Professional Oracle DBA's, trained to do this sort of thing, are among the highest paid IT workers because of their advance training.

· Speed - While RDBM databases scale well with database size, for relatively small databases, DBM databases perform faster. The reason is that RDBM databases are managed by a stand-alone database server application. Applications you write must send SQL queries to the server via inter-process communication that has a high overhead. In contrast, since the DBM database code is embedded in your application, this bottleneck is eliminated.

7.3 Using Berkeley DB

In the tutorial below, we are going to learn how to use Berkeley DB because it is the most popular and most powerful DBM (that I know of, at least). It's available on the class Linux server and is available for free to install on your own server.

The Perl interface to all of the commonly available DBMs are the same so if you are working on a computer that has a different DBM (e.g. gdbm, ndbm, sdbm, etc.) and you can't install Berkeley DB, you should have no problem getting the examples in this lecture working satisfactorily.

Technically, Berkeley DB doesn't refer to the database itself but rather to the software that manages the database. Berkeley DB is a C library that provides a consistent interface to the database and makes it easy to create a database, read data, write data, and erase data in the database. In the Perl examples below, our Perl will be calling subroutines in the C library to perform these functions on our database. If you want to look deeper into the Berkeley DB C API, you can find exhaustive documentation at http://www.sleepycat.com.

7.4 Opening a Berkeley DB Database

This code illustrates the minimum code neede to open an existing database stored in a database file called "demo.dbm".

#!/usr/bin/perl -w

use strict;

use DB_File;

use POSIX;

my %dbm;

my $db_file = "demo.dbm";

tie %dbm, 'DB_File', $db_file, O_RDWR, 0;

The Berkeley DB Perl module is loaded in with DB_File. The dbm file, demo.dbm, is opened for reading and writing with the tie() operator. Before we explain tie(), let me show you how you might use the Berkeley DB if it didn't support the tie operator.

DB_File is an object-oriented module. To use it, we would need to create an instance of DB_File that is connected to the dbm file of interest. To manipulate the data in the database, we would need to call object methods. The syntax might look like this:

Open demo.dbm for reading and writing

my $db = new DB_File('demo.dbm', O_RDWR);

Add a new key-value pair to the database

my ($key, $value) = ("Coke_20oz.", "$1.25");

$db->put($key, $value);

Note that the above example is show only for illustrative purposes. It is not valid syntax.

If you recall the discussions above, we said that Berkeley DB stores it's data as simple key-value pairs, that is, it's fundamentally a Perl hash stored in a file. Well, the Perl creators asked, "If we are just manipulating a hash on disk, why go through the trouble of creating objects and using object methods? Couldn't we just tell Perl to use a hash like interface?" With the tie operator, Perl can do this.

tie() will take a hash (it can also take arrays and scalars but that's not important right now) and associate with or tie it to a Perl object. In this case we are talking about a Berkeley DB object but tie() is not restricted to databases. When a hash it tied to an existing database, the hash will be populated with the key-value pairs already in the database. If we then change the hash, say by adding a few new key-value pairs, the new data will be automatically written to the database file on the hard drive.

Not every object/class can be tied. Only modules that have been coded with special tie methods will work with the tie operator.

Before we start going into examples of using a tied hash, let's go back and look at tie's arguments in the first example.

tie %dbm, 'DB_File', $db_file, O_RDWR, 0;
The five arguments are, in order

1) A hash to be tied.

2) The name of the Perl module to use when creating a tied object. The hash of the first argument is tied to this object.

3) The database file.

4) The read-write-create flag of the database. Here we have opened the database the O_RDWR flag, allowing us to read and write to the database. If we want read only, so we don't accidentally change the database contents, we would use O_RDONLY. These flags are defined in the POSIX module.

5) The file permission of the database. If the database already exists, use '0'.

7.5 Checking the State of a DBM Database

When opening a database, it's a good idea to have your code verify that the tie operation worked. If tie is successful, it will return a true value so we can use the same syntax as we do for open().

tie %dbm, 'DB_File', $db_file, O_RDWR, 0 or

die "Error opening $db_file: $!\n";
You can also check the state of a tied hash with the tied() operator.

tie %dbm, 'DB_File', $db_file, O_RDWR, 0;

unless(tied %dbm) {

print "Unable to open $db_file database.\n";

print "Try another database file.\n";

}

7.6 Creating a DBM Database

If you want to create a database from scratch, or if you want to open a database and have your code create one if none already exists, you use the O_CREAT flag in conjunction with the O_RDWR flag. Both flags need to appear, separated by the bitwise or operator, '|'.

tie %dbm, 'DB_File', $db_file, O_RDWR|O_CREAT, 0644;

The order of O_CREAT and O_RDWR doesn't matter.

Additionally, you need to specify the permissions of the new database file. The permissions are set with the usual Unix octal codes (q.v. chmod). Above, we have used 0644, granting read-write permissions to the user creating the database, and read-only permission to everyone else.

7.7 Emptying a DBM Database

After a database has been tied to a hash, you can empty the database by using undef on the hash itself.

undef %dbm;

You can also reassign it an empty list.

%dbm = ();

This just points out that you need to be careful with your databases. If you are only retrieving data from the database, use the O_RDONLY flag. And backup the database file if it contains anything important.

7.8 Closing a DBM Database

When you are done with the database, use the untie operator on the tied hash.

untie %dbm;

This will commit any buffered writes to disk and it will prevent any accidental manipulation of the hash corrupting the database.

7.9 Reading DBM Entries

Reading data from the database is just like reading the data from an ordinary hash. Values are read with specific key:

my $value = $dbm{'key_name'};

You can check if a key already exists in the database with the exists operator:

if(exists $dbm{$key}) {

print "$key is in the database.\n";

}

And you can dump the entire contents of the database with a simple loop:

foreach (sort keys %dbm) {

print "$_ => $dbm{$_}\n";

}

7.10 Adding, Modifying, and Deleting DBM Entries

To add a new key-value pair, or to modify the value of an existing key-value pair, just assign it to the tied hash and the data will be written to the database.

$dbm{'new_key'} = "New Value";

You can delete a key-value pair from the database with the delete operator.

delete $dbm{'key'};

� In this context, corruption means that data is not self-consistent. This is probably best illustrated with an example. Let's say in the flat file database the author names are keys and the book titles are values. Now assume there is a book called Advance Perl that has ten authors. In the database, each of those ten authors has the book Advance Perl after their name. Now if the book title changes to Turbo-charged Perl, to update the database I have to change all ten occurrences of the old title. If I make a mistake and only update nine of the titles instead of ten, then my file is corrupted because not all of those ten authors are listed as contributing to the same book.

Relational databases eliminate this potential problem by organizing the data in a way where the title only appears once in the database.

� http://www.sleepycat.com

� Data Base Administrator.

� A terabyte is one thousand gigabytes or one million megabytes.

� http://www.mysql.com

� Oracle is the second biggest software company in the world. Oracle's CEO, Larry Ellison, is worth about $50 billion.

Page 7 of 7

