CSCI44B Programming Perl II

Lecture 5

4/2/2003

5 CGI programming with CGI.pm continued

5.1 GET vs. POST methods

So far we've ignored the POST option in HTML forms. The important differences between GET and POST are

· POST data does not appear in the URL. The data is encoded in the HTTP packets sent to the web server.

· POST data can be any length. Officially, URLs aren't supposed to be longer than 256 characters and some web servers impose a limit on the query string length of GET requests. I don't know if this rule is still followed - I've heard modern browsers and web servers will accept unlimited GET query strings lengths - but it still useful to know just in case you have problems with lost data.

The implications for the second difference are obvious. If you have a lot of form data to send, you might want to use POST instead of GET just to be safe.

For the first difference, there are reasons you may want one method over the other. Because the data is not encoded in the URL, you will not be able to set bookmarks or share web pages with others. For example, if I wanted to point you to a recommend Perl book on the Barnes & Noble website, I would tell you to go here

http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?userid=2UZE6LS69W&isbn=0596000278&itm=1

Notice that there is a query string after the '?' containing three names, userid, isbn, and itm. The CGI program used to generate this page is using the GET method to determine which book to display.

Some website designers don't want people book marking individual pages so they'll use POST instead, forcing all users to go through the sites home page first. Sometimes this is done for privacy reason (maybe the data in the GET query string has private information about the user) and other times it's done because the website content is changing constantly and the site administrator doesn't want people book marking pages that they know will expire soon after they are first available.

Choosing between the two methods, in most cases, will be a matter of personal choice. But how are you, the CGI programmer, affected by either choice? If you are using CGI.pm, you don't have to worry as you do not have to specify either method in your code.

When you invoke a CGI program with a web server, any GET and POST data is sent to the CGI program. In the program, param() will look for POST data. If there is POST data, it will parse it and make it available to you. If there isn't any POST data, param() will look for GET data and parse it for you. If there is both POST and GET data, param() will only return the POST data. And, of course, if there isn't any data, param() won't return anything.

5.2 CGI.pm's object oriented interface

CGI.pm also gives you an object-oriented interface in addition to the function-oriented interface that we have been using. The following code is identical to the "Hello World" example of §4.2 except that we are now using a CGI object.

#!/usr/bin/perl -w

use strict;

use CGI;

my $obj = new CGI;

same as 'my $obj = CGI->new()'
print $obj->header();

print $obj->start_html('Hello World');

print $obj->h1('Hello World');

print $obj->end_html();

exit;

The differences between this code and the one in §4.2 are

· We don't use ':standard' to import CGI functions in main's namespace.

· We instantiate a CGI object.

· We output HTML by calling object methods instead of functions.

By not using ':standard' and using the object-oriented interface instead, all of the methods are in the CGI.pm namespace. This means that I can write a function called header() - perhaps it's a function to generate a mail header - and it won't collide with the CGI.pm header() function.

All of the CGI.pm functions we have learned are accessible as object methods. The arguments are also treated the same way as the function-oriented versions.

Other reasons why you might prefer to use the object-oriented interface are

· The OO interface consumes less memory than the function-oriented interface. I'm not sure why but I believe it's because Perl loads in every CGI function at run time as if your CGI program and CGI.pm were combined into one big file.

· You can create multiple instances of CGI objects.

· You can save the state of a CGI object to a file or a database and it can be loaded at a later time. This can be useful if you CGI program consists of a series of forms, like an income tax form, and you want to give users the option to quit and return later where they left off.

· You may just like the object-oriented interface because that's how you view programming problems and solutions.

5.3 Form Tags

CGI.pm also makes it easier to create HTML forms. The <FORM> tag is created this way:

print $q->start_form(

-method=>'GET',

-action=>'http://www.t.org/cgi-bin/p.cgi'

);

print $q->endform();

$q is a CGI object. The arguments to start_form() are hash key-value pairs. The first key, '-method', is the CGI data transfer method. It's value is either 'GET' or 'POST'. The second key, '-action', has a value that tells which CGI program will receive the form data. Note that the dash before each key name is important. All of the standard attributes have a dash in front of their names.

This code produces HTML that looks like this.

<FORM METHOD="GET" ACTION="http://www.t.org/cgi-bin/p.cgi" ENCTYPE="application/x-www-form-urlencoded">

</FORM>

The ENCTYPE attribute is for older browsers and is included by default. We can ignore it.

5.4 Text Field and Password Field

Single line text fields are generated with this syntax

print $q->textfield(

-name=>'field_name',

-default=>'default_text',

-size=>50,

-maxlength=>80

);
where -name is the name associated with the data, -default is the default text in the field, -size is the size of the text field, and -maxlength is the maximum number of characters a user can type in the field. This is the HTML.

<INPUT TYPE="text" NAME="field_name" VALUE="starting_value" SIZE=50 MAXLENGTH=80>

If you want a label printed in front of or after the text field, you have to print the text seperately. This will example will display an empty box for the user to type in their zip code.

print "Enter your Zip Code: ",

$q->textfield(

-name=>'zip_code',

-size=>5,

-maxlength=>5

);
Password fields have a similar format.

print $q->password_field(

-name=>'user_password',

-value='Type your password here'

-size=>50,

-maxlength=>80

);

You can create a text box that spans several rows.

print $q->textarea(

-name=>'comment',

-default=>'Type your comments here',

-row=>10,

-columns=>40

);

5.5 Radio Buttons

The syntax for radio buttons is more involved than text fields.

my %labels= (
add=>'Addition',

sub=>'Subtraction',

mul=>'Multiplication',

div=>'Division'

);

my @values = qw(add sub mul div);

print $q->radio_group(
-name=>'math_op',

-values=>\@values,

-default=>'add',

-linebreak=>'true',

-labels=>\%labels

);

-name is the name of the radio group data. -values is an array reference or anonymous array containing the list of radio button values. -default is the radio button that is initially selected. -linebreak sets if the radio buttons will have a line break after each button. If -linebreak is true, the radio buttons will line up in a column. If -linebreak is false or undefined, the radio buttons will be ordered horizontally. -labels is a hash reference or anonymous hash containing the labels printed next to each radio button in the browser. The hash is organized such that the keys are the items from @values, and the hash values are the labels that are printed next to each radio button with the corresponding value (got that?).

This is probably easier to understand if you look at the HTML this method generates.

<INPUT TYPE="radio" NAME="math_op" VALUE="add" CHECKED>Addition

<INPUT TYPE="radio" NAME="math_op" VALUE="sub">Subtraction

<INPUT TYPE="radio" NAME="math_op" VALUE="mul">Multiplication

<INPUT TYPE="radio" NAME="math_op" VALUE="div">Division

5.6 Check boxes

The check box syntax is almost identical to the radio button syntax.

my %labels= (
perl=>'Perl',

java=>'Java',

ccpp=>'C/C++',

sql=>'SQL'

);

my @values = qw(perl java ccpp sql);

my @default = qw(perl ccpp);

print $q->checkbox_group(-name=>'languages',

-values=>\@values,

-default=>\@default,

-linebreak=>'true',

-labels=>\%labels

);
The difference to note here that -default can accept an array reference or anonymous array containing a list of any number of check boxes that should be check initially. If only one item needs to be checked, you can use a string containing the single item to be checked (just like in the radio button example above) instead of an array reference or anonymous array. The HTML for the above code looks like this.

<INPUT TYPE="checkbox" NAME="languages" VALUE="perl" CHECKED>Perl

<INPUT TYPE="checkbox" NAME="languages" VALUE="java">Java

<INPUT TYPE="checkbox" NAME="languages" VALUE="ccpp" CHECKED>C/C++

<INPUT TYPE="checkbox" NAME="languages" VALUE="sql">SQL

5.7 Popup Menu

A popup menu is a menu where only one item is visible until you press a button, upon which all of the choices will become visible.

my %labels= (
perl=>'Perl',

java=>'Java',

ccpp=>'C/C++',

sql=>'SQL'

);

my @values = qw(perl java ccpp sql);

print $q->popup_menu(-name=>'languages',

 -values=>\@values,

 -default=>'ccpp',

 -labels=>\%labels

);
This popup menu will display 'C/C++' by default. When the button next to the menu is clicked, the user can then select between 'Perl', 'Java', 'C/C++' (already selected by default), and 'SQL'.

<SELECT NAME="languages">

<OPTION VALUE="perl">Perl

<OPTION VALUE="java">Java

<OPTION SELECTED VALUE="ccpp">C/C++

<OPTION VALUE="sql">SQL

</SELECT>
You may have noticed that the popup_menu() arguments are identical to the radio button example even though the HTML is different. This similarity in the interface is intentional as it makes creating forms easier.

5.8 Scrolling List

A scrolling list is menu that has a scroll bar so you can move up and down to see all of the menu choices.

my %labels= (
perl=>'Perl',

java=>'Java',

ccpp=>'C/C++',

sql=>'SQL',

python=>'Python',

fortran=>'Fortran',

ada=>'Ada',

basic=>'Basic',

cobol=>'Cobol'

);

my @values = qw(perl java ccpp sql python fortran ada basic cobol);

my @default = qw(perl java);

print $q->scrolling_list(-name=>'languages',

-values=>\@values,

-default=>\@default,

-size=>5,

-multiple=>'true',

-labels=>\%labels

);
The interface of scrolling_list() is similar to checkbox_group(). -name is the name of the data associated with the scrolling list. -values is an array reference or anonymous array containing a list of the possible values associated with -name. -default is either a string containing one of the items from -value, or an array reference or anonymous array containing several items from -value. This is/these are the menu choice(s) that will be selected by default. -size is the height of the viewable area of the scrolling list. -multiple is either true or false. If true, a user can select multiple menu items. -labels is a hash reference or anonymous hash containing the labels printed next to each radio button in the browser. The hash is organized such that the keys are the items from @values, and the hash values are the labels that are printed next to each radio button with the corresponding value (this works the same as the checkbox group).

Here is the HTML the above code produces.

<SELECT NAME="languages" SIZE=5 MULTIPLE>

<OPTION SELECTED VALUE="perl">Perl

<OPTION SELECTED VALUE="java">Java

<OPTION VALUE="ccpp">C/C++

<OPTION VALUE="sql">SQL

<OPTION VALUE="python">Python

<OPTION VALUE="fortran">Fortran

<OPTION VALUE="ada">Ada

<OPTION VALUE="basic">Basic

<OPTION VALUE="cobol">Cobol

</SELECT>
5.9 Submit and Reset Buttons

Submit buttons are straight forward.

print $q->submit(-name=>'submit_button',

 -value=>'Send Data'

);
-name is the name associated with the data this button sends. Don't confuse the data of the button with the data of the entire form that is sent when the button is pressed. The button data is just one of the data sent to the CGI program. -value is the data sent. It is also the label that appears on the button itself.

When you press a button, the form sends the button name and a value. If your form only has one button, you don't usually care about handling these data in you CGI program. However, if your form has multiple buttons, you may want to know which one a user pressed. You can use the button name and value to determine that.

-name and -value are optional.

The reset button is just this.

print $q->reset();

Page 8 of 8

