CSCI44B Programming Perl II

Lecture 4

3/31/2003

4 CGI programming with CGI.pm

4.1 Introduction to CGI.pm

In the previous lecture, we saw that we had to hand code HTML tags in our CGI program to produce a web page that would display correctly in the user's browser. For simple pages, this is something we can easily do. However, as the pages become more complex, keeping track of all of the HTML tags becomes very difficult; miss a '>' here, miss a '/' there, or get a couple of tags out of order, and page won't display in the browser. To get an idea of how many HTML tags we are talking about, take a look at the HTML source for http://www.yahoo.com. Last time I checked, this relatively simple page has nearly 400 tags.

To simplify writing Perl/CGI programs, an industrious programmer named Lincoln Stein
, wrote a very popular Perl module, CGI.pm. CGI.pm consists of a number of subroutines that will produce most or all of your HTML for you. CGI.pm doesn't eliminate the need to learn HTML, however, as you have to know HTML in order to know which CGI.pm subroutines to call, and in which order to call them, to format you pages. What CGI.pm does do for you is free you from the drudgery of having to hand code HTML in your code. It will make your code easier to read and as a result, less bug prone.

CGI.pm is a pretty large and full-featured module. The perldoc for this module is 58 pages long. There is even a book dedicated to this module, Official Guide to Programming with CGI.pm by Lincoln Stein (who best to write this book?!).

CGI.pm has two interfaces. One is an object-oriented interface and the other is a function-oriented interface that can simplify programming when objects are not needed. In this lecture, we will learn how to use the function-oriented interface.

4.2 A basic CGI program

To use the function-oriented style, we import the standard CGI.pm functions into our namespace by specifying ':standard' as an argument when we load the CGI module. Let's look at a simple example.

#!/usr/bin/perl -w

use strict;

use CGI qw/:standard/;

print header();

print start_html('Hello World'),

print h1('Hello World'),

print end_html;

exit;

Type in this code, put the program in your cgi-bin directory, and run it from the browser. You should see "Hello World" in the title bar of your browser and "Hello World" in big bold letters in your browser window. Select View|Source in the browser. You should see this HTML (I added extra white space for readability).

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<H1>Hello World!</H1>

</BODY>

</HTML>

Here is an explanation of the code line-by-line and corresponding HTML.

use CGI qw/:standard/;

This loads in the CGI module. qw/:standard/ imports into our namespace a collection of useful subroutines. :standard uses the %EXPORT_TAGS hash to import a set of names without us having to name each imported subroutine explicitly. Refer back to Lecture 12 in CSCI44A where we learned how to import subroutines using the @EXPORT_OK array. There we had to name each and every desired subroutine or variable we wanted to import.

print header();

This prints out the Content-Type: text/html header (refer back to the previous lecture if you forgot what this is for). You can specify a different content type, text/plain for example, by giving the type as an argument to header().

print start_html('Hello World');

start_html() prints out all of the tags you need to start and HTML document. It prints out all of the HTML up to and including the <BODY> tag.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

This is quite convenient as we can produce 7 tags with one subroutine call. If we had left out the 'Hello World' as an argument, CGI.pm would have put 'Untitled Document' as the title.

print h1('Hello World');

This prints <H1>Hello World</H1>. Notice that the subroutine and the HTML tag have the same name. You will find than most HTML tags have a corresponding CGI.pm subroutine and the arguments to that subroutine set the attribute or the text between the pair of tags. Also notice that one call to h1() prints out both <H1> and </H1>.

print end_html;

This line prints out </BODY> and </HTML> end tags to finished the document.

4.3 Passing data to a CGI program

You can get the data passed to your CGI program using the param() subroutine. The way you can get the value of named data is to use the name as an argument to param(). For example, in the last lecture we saw a HTML form that sends two numbers and a math operation to a CGI program called math_op1.cgi. These data were named num1, num2, and op, respectively. The CGI was sent the data with a URL like this.

http://linux.cschabot.org/~fellers/cgi-bin/math_op1.cgi ?num1=3&op=mul&num2=5
If you look back at the code, you’ll see that we had to use the %ENV hash to get the data as a single string and then use a couple of split operations to get individual values.

With the param() subroutine, we could get the values much quicker.

my $num1 = param(‘num1’);

my $num2 = param(‘num2’);

my $op = param(‘op’);

This makes your code much cleaner and easier to write! If one of the data elements is multi-valued, say the form has a checkbox group that asks you to check off all of the computer languages you know, you can assign the return value of a param() call to an array.

my @programmingLanguages = param(‘lang’);

If param() doesn’t have any arguments, it returns a list of all the names passed to the CGI program. In the above invocation of math_op1.cgi, this would print out “num1, op, num2”.

my @params = param();

print join(‘, ‘, @params);

You can use this feature to get all of the values and load them into a hash.

my %data= ();

foreach (param()) { $data{$_} = param($_); }

If particular name doesn’t have a value associated with it, param() will return an empty string for that name.

4.4 Passing data on the command line

CGI.pm has an added convenience. You can pass data on the command line; you don't have to use the browser. This let's you test your CGI program before you have created your HTML forms.

The CGI program can accept the query string as it would appear in the URL
.

./math_op1.cgi 'num1=3&op=mul&num2=7

Alternatively, you can leave out the ampersands.

./math_op1.cgi num1=3 op=mul num2=7

4.5 Escaping/un-escaping characters

Some characters have a special meaning in a query string. For example, the ampersand is used as a delimiter between name-value pairs (q.v. §4.4), and the plus sign is used to delimit multiple values for a single name (e.g. a check box group can have multiple selections for one named group).

So what happens when you need to enter one of these special characters in a form? The browser encodes them so that your CGI program can distinguish between special characters and characters that should be taken literally. For example, let's say you have a form with two text fields:

<HTML>

<BODY>

<FORM METHOD=GET ACTION="http://linux.cschabot.org/~fellers/cgi-bin/lec4/4.5a.cgi">

<P>Search Text 1: <INPUT TYPE=TEXT NAME="srch1" SIZE=20>

<P>Search Text 2: <INPUT TYPE=TEXT NAME="srch2" SIZE=20>

<P><INPUT TYPE=SUBMIT>

</FORM>

</BODY>

</HTML>
If I type "A+ certification" and "J&R PC's" in fields 1 and 2, respectively, then click the submit button, I'll see query this in the address bar:

text1=A%2B+certification&text2=J%26R+PC%27s

The + in A+ has been escaped to %2B, the & in J&R has been escaped to %26, and the ' in PC's has been escaped to %27. Spaces have been converted to +'s since spaces are not allowed in URL's.

When you want to recover the original string in your CGI program, you have to unescape these character codes. Writing the code to un-escape characters would be tedious because you would have to lookup all the possible character codes and type them in one by one. Fortunately, however, if you use param() to retrieve the values of srch1 and srch2, param() will do this conversion for you.

$query = " text1=A%2B+certification&text2=J%26R+PC%27s"

my $query = %ENV{QUERY_STRING};

my $srch1 = param('srch1');
$srch1 = "A+ certification"
my $srch2 = param('srch2');
$srch2 = "J&R PC's"
4.6 Generating HTML programmatically

As we saw in the first CGI.pm code example in §4.2, we use CGI.pm subroutines to generate HTML output. Here we will explore more of these HTML subroutines and give some examples of their versatility.

Most of the simple HTML tags have subroutines with identical names. Tags that are balanced, like the <H1>hello world</H1> example above, can take a string as an argument. If a tag subroutine is called without an argument, just the first tag is output. Here are few examples.

center(‘some text’);
<CENTER>some text</CENTER>

p(‘a paragraph’);

<P>a paragraph</P>

br();

b(‘bold text’);

bold text
i(‘italicized text’);
<I>italicized text</I>

You can also embed subroutines in another subroutine if you want nested tags.

b(i(‘bold italics’));
<I>bold italics</I>

These subroutines can also take several comma-separated strings as a list of arguments. This gives you even more control of the HTML output.

i(‘some’, b(‘bold’), ‘text’);
<I>some bold text<I>
Notice how the subroutine inserted a space after some and . This is the default behavior. If by chance you don’t want spaces inserted between each string argument, you can change this by setting the Perl special variable $” to an empty string.

$” = ‘’;

empty string
i(‘some’, b(‘bold’), ‘text’);
<I>someboldtext<I>
Here’s an example of how to create an unordered list by embedding CGI.pm subroutines. This code

ul(li(‘One’), li(‘Two’), li(‘Three’));

will generate this HTML

One Two Three

HTML subroutines don’t only take strings as arguments. If you supply an array reference as the first argument, the subroutine will put tags around each element of the array.

ul(li([‘One’, ‘Two’, ‘Three’]));

will generate this HTML, the same as before.

One Two Three

Note that for this to work, the first argument as to be an array reference. Using an ordinary array will produce the wrong effect.

@txt = qw(One Two Three);

ul(li(@txt));
produces a one item list.

One Two Three

This happens because ul(li(@txt)) is equivalent to

ul(li(‘One’, ‘Two’, ‘Three’));
4.7 CGI::Pretty

CGI.pm produces HTML with most or all of the white space eliminated. For example, the example in §4.2 will look something like this

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML><HEAD><TITLE>Hello World</TITLE></HEAD>

<BODY><H1>Hello World!</H1></BODY></HTML>

instead of a more readable form like this

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<H1>Hello World!</H1>

</BODY>

</HTML>

In many cases, the more compact form is desirable as this makes web pages smaller (few bytes) that can be downloaded much more quickly. However, compact HTML is harder to read and so makes code development more difficult. You can have your CGI programs produce human readable HTML by using the CGI::Pretty module instead of the standard CGI module.

use CGI::Pretty qw(:standard);

CGI::Pretty is a sub-class of CGI.pm. It has all the same functionality; only the format of the HTML is different.

4.8 Tables

Tables are also easy to make with CGI.pm subroutines. Getting the syntax right takes a little practice since you’ll have subroutines nested three or more layers deep. However, once you get the hang of it, you’ll find CGI.pm tables are easier to code and debug compared to straight HTML. The subroutines you’ll use are

table()

Tr()

th()

td()

which produce the <TABLE>, <TR>, <TH>, and <TD> balanced tags. Notice that the second subroutine is Tr() and not tr(). The first letter of the subroutine name is capitalized. This is an exception to the naming convention because Perl already has a built-in operator called tr, the translation operator.

This HTML table

<TABLE>

<TR>

<TD>Name</TD>

<TD>Age</TD>

<TD>Sex</TD>

</TR>

<TR>

<TD>John</TD>

<TD>23</TD>

<TD>Male</TD>

</TR>

<TR>

<TD>Monica</TD>

<TD>21</TD>

<TD>Female</TD>

</TR>

</TABLE>
is produced with this CGI code (white space added for clarity).

table(

Tr(

td(‘Name’),

td(‘Age’),

td(‘Sex’)

),

Tr(

td(‘John’),

td(’23’),

td(‘Male’)

),

Tr(

td(‘Monica’),

td(‘21’),

td(‘Female’)

)

);
If we use anonymous arrays as arguments, we can simplify our code by reducing the number of calls to Tr() and td().

table(

Tr(

[

td([‘Name’, ‘Age’, ‘Sex’]),

td([‘John’, ‘23’, ‘Male’]),

td([‘Monica’, ‘21’, ‘Female’])

]

)

);
4.9 Adding tag attributes

Many tags have attributes that you can set to modify a tags default behavior. For example, in a table, you can set the border, background color, or alignment with the BORDER, BGCOLOR, or ALIGN attributes respectively. Tag attributes you want to set are passed to the tag subroutine with an anonymous hash or hash reference as the first argument. Here’s a part of the above table code to demonstrate how to set a border and background color.

table({-border => 1, -bgcolor => ‘yellow’},

Tr(

....

)

);
The <TABLE> tag will now have the border set.

<TABLE BORDER=”1” BGCOLOR=”yellow”>

When you look at the above code sample, here are some things your should notice.

· The anonymous hash containing the attributes must be the first argument. Anonymous arrays, subroutines, and strings must come after the anonymous hash.

· The attribute names (keys) must be preceded by a dash. The attribute names can have quotes around them.

· Number values don’t need quotes but string values do. Numbers can be quoted if you like.

Here is a more complicated example you should study. The HTML output follows the code.

table({-border=>1, -cellspacing=>3, -cellpadding=>3},

Tr(

td({-colspan=>3}, “Stats”)

),

Tr({-align=>’center’},

[

td([‘Name’, ‘Age’, ‘Sex’]),

td([‘John’, ‘23’, ‘Male’]),

td([‘Monica’, ‘21’, ‘Female’])

]

)

);
<TABLE BORDER=”1” CELLSPACING=”3” CELLPADDING=”3”>

<TR>

<TD COLSPAN=”3”>Stats</TD>

</TR>

<TR ALIGN=”center”>

<TD>Name</TD>

<TD>Age</TD>

<TD>Sex</TD>

</TR>

<TR>

<TD>John</TD>

<TD>23</TD>

<TD>Male</TD>

</TR>

<TR>

<TD>Monica</TD>

<TD>21</TD>

<TD>Female</TD>

</TR>

</TABLE>
� Lincoln Stein is one of the Perl elite. Aside from contributing the widely used CGI.pm module, he has published at least two Perl books, and runs a computational biology research lab at the Cold Spring Harbor Laboratory. L. Stein is also a renown bioinformatician (the science of using computer science to study genomics). L. Stein earn both his M.D. and Ph.D. from Harvard in 1989. His web page is http://stein.cshl.org/~lstein/.

� You may have to put quotes around the query string like this: ./math_op1.cgi 'num1=3&op=mul&num2=7'. The reason that this maybe required is that without the quotes, the command line shell may interpret the & as an instruction to run the process in the background.

Page 1 of 10

