CSCI44B Programming Perl II

Lecture 3

3/16/2003

3 Introduction to CGI programming

3.1 How CGI works

CGI is an acronym for Common Gateway Interface. CGI is a method where you can send data to a program running on a web server using the Hypertext Transport Protocol, or HTTP. An easy way to send data is to use a HTML page with forms. Similarly, GCI allows the remote program to create HTML documents at run time, usually customized in some way based upon the data sent to it, to the web server software. The web server then sends this customized web page to the remote web browser. This process is illustrated in Figure 1.

[image: image1.wmf]Web Server

PC

CGI Program

4) Web Server sends

HTML page to

Web Browser

2) Call CGI Program

and pass GET/POST

data

3) CGI Program

returns HTML

formatted base upon

GET/POST data

1) HTTP Request from

Web Browser

Figure 1.

The CGI program on the web server can be written in any language, at Yahoo most CGI programs are/were written in C++, but most CGI programs are written in Perl. The reason Perl is so popular is three fold, 1) it's a cross platform language (you can run it on Unix and Windows), 2) it's easier to write and debug (compared to C/C++), and 3) it's performance can handle a large number of web hits (in extreme cases, you may need a faster language like C++).

3.2 Setting up your CGI environment

In this class, we will learn how to write CGI programs that run on the class Linux server. The web server is running Apache v1.3.12, a robust and popular open source web server. Apache works so well, Yahoo uses it exclusively on their FreeBSD Unix web servers. The instructions below are will work on Apache but should also be applicable to just about any web server that supports CGI. If you are interested in learning more about how Apache works, you can find the source code and extensive documentation at the Apache web site, http://www.apache.org.

When you set up a web server, usually all of the CGI programs will reside in some common directory such as /usr/local/apache/cgi-bin/. Most CGI documentation you will find in books and on the Web assume you have root or administrator privileges and will tell you to put your code in this common directory. When you do not have root access to the machine, you have to put your personal CGI programs in your home directory, as I will explain.

In your home directory, make directory called public_html (you should have already done this when you were making web pages in the previous lectures). Within public_html, make a directory called cgi-bin. As you might have guessed, your CGI program will be put into this directory. These two directories need to be set as readable and executable by all. Here's a snap shot of how I have mine set

$>cd ~fellers

$>ls -l

drwxrwxr-x 9 fellers fellers 4096 Dec 10 21:10 csci44a

drwxr-xr-x 3 fellers fellers 4096 Mar 7 21:15 public_html

$>cd public_html

$>mkdir cgi-bin

$>ls -l

drwxr-xr-x 2 fellers root 4096 Mar 7 22:58 cgi-bin

Once you get these directories set up, you are now ready to create a very basic CGI program to test if the system is working. Inside the cgi-bin directory, create a file called example1.pl and put this in it

#!/usr/bin/perl -w

print "Content-type: text/plain\n\n";

print "Your Name says: Hello World!\n";

exit;

where "Your Name" is your name. This program needs to executable by all so run this on the command line

$>chmod a+x example1.pl

Now open your web browser and go to

http://linux.cschabot.org/~username/cgi-bin/example1.pl
where you substitute username for your account name on the Linux server. If everything is working you should see the "Hello World" message in your browser window. You have just successfully created your first CGI program.

If it doesn't appear, double check that you followed all of the instructions above. If it still doesn't work, try my example at

http://linux.cschabot.org/~fellers/cgi-bin/example1.pl

to verify that the web server is running. If you have are having problems and you have Perl installed on your Windows computer, such as ActiveState Perl, please read further. When you install ActiveState Perl, Windows sets a file association for files with the *.pl extension. That is, if you double click on a file with a *.pl extension, Windows run the Perl program with the ActiveState Perl interpreter. This causes a problem with Internet Explorer because when you try to access a CGI program with a *.pl extension, IE tries to download the CGI program thinking you want to run it locally. If you have this problem, rename your program example1.cgi and also change the URLs accordingly.

3.3 Understanding the first example

When your web brower is pointing to a CGI URL like

http://linux.cschabot.org/~fellers/cgi-bin/example1.pl

the Apache software on the web server receives the page request. It analyzes the URL and realizes that the request is pointing to a program in your cgi-bin directory. Apache then runs the program, capturing it's output, and sends the output back to your browser.

We put the code in our cgi-bin directory for safety reasons. By default, Apache expects CGI programs to be in this directory and assumes any programs not in this directory cannot be run through an HTTP request. This prevents someone from using a browser to run your code that resides in other directories. Do not put programs that you don't want people to see or run in your cgi-bin directory as these programs are accessible to anyone with a browser; they don't need an account on the Linux server.

Because your cgi-bin directory is accessible to the public, you need to make your CGI programs runnable by all. That is why we used the chmod a+x command to change the executable permissions. Now you may be wondering if you can restrict the permissions of the program so that only you, the owner of the program, can run it. The answer is 'no' because when your browser sends the HTTP request to run your CGI program, the Apache web server has no idea who you are. Apache just sees some anonymous person trying to run a CGI program in your cgi-bin directory.

Our example program prints out two lines. The "Hello World" line is self-explanatory but the first line

print "Content-type: text/plain\n\n";
may not be clear. The original HTML specification required you to put some header information in the file so that your browser would know how to interpret the data it receives from a web server. In our earlier HTML lectures, we left out this information because all modern browser assume that the data is ordinary HTML when the document starts off with an <HTML> tag. When the browser receives properly formatted HTML, it doesn't raise a fuss.

Or example1.pl, however, is sending back text without any HTML tags. In this case we have to tell the browser what kind of data we are sending with the Content-type attribute. Since we are sending ordinary text, as opposed to uuencoded data or binary data, that is just plain text, we specify it as text/plain. If, however, our text were code, say JavaScript code that our browser could run, we would have put text/javascript instead.

3.4 Environmental data

If you recall from the last semester, all Perl programs have a default hash, %ENV, that contains information such as your username, search path, default editor, etc. That is, things set by your shell are put into %ENV when you run your Perl program.

Perl CGI programs are different, however, since Apache, not you, is running the code. In this case, the %ENV is set with information related to the web server and the web browser invoking the CGI program. This little CGI program, example2.pl, will print out this hash.

#!/usr/bin/perl -w

print "Content-type: text/plain\n\n";

foreach (sort keys %ENV) {

 print "KEY:\t$_\n";

 print "VALUE:\t$ENV{$_}\n\n";

}

exit;

Call this program in your browser and you'll see output that looks like this.

KEY:
DOCUMENT_ROOT

VALUE:
/var/www/html

KEY:
GATEWAY_INTERFACE

VALUE:
CGI/1.1

KEY:
HTTP_ACCEPT

VALUE:
/

KEY:
HTTP_ACCEPT_ENCODING

VALUE:
gzip, deflate

KEY:
HTTP_ACCEPT_LANGUAGE

VALUE:
en-us

KEY:
HTTP_CONNECTION

VALUE:
Keep-Alive

KEY:
HTTP_HOST

VALUE:
linux.cschabot.org

KEY:
HTTP_USER_AGENT

VALUE:
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; sbcydsl 3.12; YComp 5.0.0.0; yie6_SBCDSL)

KEY:
PATH

VALUE:
/sbin:/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin

KEY:
QUERY_STRING

VALUE:
name=John&day=Saturday

KEY:
REMOTE_ADDR

VALUE:
67.123.10.72

KEY:
REMOTE_PORT

VALUE:
33342

KEY:
REQUEST_METHOD

VALUE:
GET

KEY:
REQUEST_URI

VALUE:
/~fellers/cgi-bin/example2.pl?name=John&day=Saturday

KEY:
SCRIPT_FILENAME

VALUE:
/home/fellers/public_html/cgi-bin/example2.pl

KEY:
SCRIPT_NAME

VALUE:
/~fellers/cgi-bin/example2.pl

KEY:
SERVER_ADDR

VALUE:
192.168.0.31

KEY:
SERVER_ADMIN

VALUE:
root@localhost

KEY:
SERVER_NAME

VALUE:
linux.cschabot.org

KEY:
SERVER_PORT

VALUE:
80

KEY:
SERVER_PROTOCOL

VALUE:
HTTP/1.1

KEY:
SERVER_SIGNATURE

VALUE:
<ADDRESS>Apache/1.3.12 Server at linux.cschabot.org Port 80</ADDRESS>

KEY:
SERVER_SOFTWARE

VALUE:
Apache/1.3.12 (Unix) (Red Hat/Linux) mod_ssl/2.6.6 OpenSSL/0.9.5a DAV/1.0.1 PHP/4.0.1pl2 mod_perl/1.24
For the most part you can ignore what's in this hash but there are a few keys worth noting

· HTTP_USER_AGENT: Tells the CGI program what kind of web browser is making the request. I also tells the CGI program the operating systems the browser is running on. Here we see that I was use MSIE v6.0 (Microsoft Internet Explorer v6.0) and Windows NT v5.0 (actually Windows2000 but Apache calls it Windows NT v5.0). This information can be useful if you need to format the CGI output for a specific type of browser or operating system.

· REMOTE_ADDR: The IP address of the machine running the browser.

· REQUEST_METHOD: This will either be set to GET or POST, telling the CGI program how data from the browser is being sent.

· QUERY_STRING: If REQUEST_METHOD is GET, the data sent by the browser is set here.

3.5 Sending data to a CGI program with GET

Here we will create a simple web calculator that will ask for two numbers to add, subtract, multiply, or divide. This example will demonstrate an HTML form in action, how the form data is sent to a CGI program using the GET protocol, and how the CGI program uses this data to return a simple web page to you with the correct answer.

Here is the HTML page asking for the user's data.

<HTML>

<BODY>

<FORM METHOD=GET ACTION="/~fellers/cgi-bin/math_op1.pl">

Enter in two numbers to add, subtract, multiply, or divide.<P>

<TABLE BORDER=1>

<TR>

<TD>

First number: <INPUT NAME="num1" SIZE="5" TYPE=TEXT>

</TD>

<TD>

<INPUT TYPE="RADIO" NAME="op" VALUE="add" CHECKED>Add

<INPUT TYPE="RADIO" NAME="op" VALUE="sub">Subtract

<INPUT TYPE="RADIO" NAME="op" VALUE="mul">Multiply

<INPUT TYPE="RADIO" NAME="op" VALUE="div">Divide

</TD>

<TD>

Second Number: <INPUT NAME="num2" SIZE="5" TYPE=TEXT>

</TD>

</TR>

</TABLE>

<P><INPUT VALUE="Calculate" TYPE=SUBMIT>

</BODY>

</HTML>

Here is how it looks in IE.

Top of Form

Enter in two numbers to add, subtract, multiply, or divide.

	First number: [image: image2.wmf]

	[image: image3.wmf]

Add
[image: image4.wmf]

Subtract
[image: image5.wmf]

Multiply
[image: image6.wmf]Divide
	Second Number: [image: image7.wmf]

[image: image8.wmf]Calculate

Bottom of Form

Look at the HTML form and you'll see that the two text fields have the names num1 and num2. You'll also see that there are four radio buttons that are collectively named op. These three form names, num1, num2, and op, are the names your CGI program will use to get the data from this form. Notice in the <FORM> tag, ACTION is set to math_op1.pl. This is the CGI program that will receive the data from this form.

Now enter 5 in the first field, 8 into the second and press the calculated button. Since we haven't created math_op1.pl yet, you'll get an error message in your browser but that's ok for now. After you press the Calculate button, look at the URL in your brower. You'll see that it now points to math_op1.pl, as you would expect. But there is also a lot of text after the CGI program name.

http://linux.cschabot.org/~fellers/cgi-bin/math_op1.pl?num1=5&op=add&num2=8

The part we need to concentrate on is this

math_op1.pl?num1=5&op=add&num2=8

math_op1.pl is the name of the CGI program. The '?' tells the Apache server that receives the URL request that the string after the '?' is data to be given to the CGI program. The string after the '?' is a series of form element names and their values. Each name-value pair is separated by an ampersand ('&'). This string contains three name-value pairs

num1=5

op=add

num2=8

If you think back to the form and the values we typed in, you'll realized that this string contains the information we put into the form. This is how form data sent with the GET protocol is sent to a CGI program.

Here is the CGI program, math_op1.pl.

#!/usr/bin/perl -w

use strict;

#

The get the GET data and put it in a hash for easy

manipulation. We should get 'num1', 'num2' and 'op'

data. num1 and num2 are numbers. op should be add,

sub, mul, and div for addition, subtraction,

multiplication, and division, respectively.

#

my @get_data = split('&', $ENV{"QUERY_STRING"});

my %get_data = ();

foreach (@get_data) {

 my ($key,$value) = split('=',$_);

 $get_data{$key} = $value;

}

#

Use op to figure what type of mathematical operation to

do. $op_str helps us to create a proper English

sentence.

#

my $result;

my $op_str;

if($get_data{op} eq 'add') {

 $result = $get_data{num1} + $get_data{num2};

 $op_str = "added to";

}elsif($get_data{op} eq 'sub') {

 $result = $get_data{num1} - $get_data{num2};

 $op_str = "minus";

}elsif($get_data{op} eq 'mul') {

 $result = $get_data{num1} * $get_data{num2};

 $op_str = "multiplied by";

}elsif($get_data{op} eq 'div') {

 $result = $get_data{num1} / $get_data{num2};

 $op_str = "divided by";

}

#

Send the result as HTML.

#

print "Content-type: text/html\n\n";

print "<HTML>\n";

print "<BODY>\n";

print "<H1>\n";

print "$get_data{num1} $op_str $get_data{num2} is $result\n";

print "</H1>\n";

print "</BODY>\n";

print "</HTML>";

exit;
The GET string

num1=5&op=add&num2=8
is initialized in the Perl %ENV hash. The key containing the string is QUERY_STRING. In order to retrieve the two numbers and the math operation to perform, the code splits up the string with a couple of split operations and loads the data in a hash for easy access.

Once the program has the data, it's a simple matter to carry out the mathematical operation and print out a small HTML document to present the results to the user.

3.6 Dealing with errors

If your CGI code has bugs in it, it can be tough to debug; much tougher than you are used to because Apache won't print out error messages to help you find your mistakes. The reason is that Apache will only send out valid HTML (or plain text, images, etc.). Error messages are directed to the Apache log files. All you'll see in your browser is a less than helpful message like this one.

4 Internal Server Error

The server encountered an internal error or misconfiguration and was unable to complete your request.

Please contact the server administrator, root@localhost and inform them of the time the error occurred, and anything you might have done that may have caused the error.

More information about this error may be available in the server error log.

Apache/1.3.12 Server at linux.cschabot.org Port 80

Even simple syntax errors in your code will give you this message in your browser window.

You can search for error messages in the Apache log files but it can be very difficult. There is only one Apache log file and every error message is copied there. If can be impossible to distinguish your error messages from the other user's error messages.

To help find errors, a better method is to run your CGI program on the command line with the '-c' option.

$>perl -c math_op1.pl

'-c' tells Perl to check the program's syntax without actually running it. Any problems with the code will be printed to your terminal.

This isn't the only way to debug your CGI programs. We will learn more when we start using the CGI.pm module in a later lecture.

Page 1 of 10

_1110095549.unknown

_1110095552.unknown

_1110095553.unknown

_1110095550.unknown

_1110095546.unknown

_1110095547.unknown

_1108732033.vsd

_1110095545.unknown

