CSCI44B Programming Perl II

Lecture 10

5/4/2003

10 Perl documentation

10.1 POD: Plain Old Documentation

All of you should be well familiar with the online Perl documentation that is viewable with the perldoc application. For example, you can read a quick tutorial and reference of the CGI.pm module by typing

$>perldoc CGI

on the command line. In fact, all Perl modules included with the standard Perl release or those archived on CPAN include perldoc documentation. Notice how the online documents are neatly formatted like the standard Unix man pages to make them easy to read.

This documentation is not contained in separate files but is actually embedded in the modules themselves. Open CGI.pm
 in your favorite editor or file viewer and scroll to the bottom of the file. There you will see text that has the same content as the CGI perldoc page without the nice formatting. This text is the text that is used to compose the CGI perldoc page.

So, how is the text in CGI.pm converted into readable online documentation? If you look closely at the text in CGI.pm, you may notice odd things like '=head1' and '=item 2'. These are formatting directives that perldoc uses as instructions on how to format the text. These directives are similar to the tags we put in HTML documents that tell the browser how to display text. This formatting system is known as POD, for Plain Old Documentation. In the following sections, we'll learn how to use this system.

10.2 A simple example

We'll start off with a simple POD example to give you an idea of how the system works. Here I have a file called pcal.pod:

=pod

=head1 NAME

pcal - A Perl version of Linux's calendar program.

=head2 SYNOPSIS

pcal [-13] [month [year]]

=head2 DESCRIPTION

pcal displays a simple calendar. If arguments are not specified, the current month is displayed.

=head2 OPTIONS

=over 8

=item -1

Display one month.

=item -3

Display three months, the current month, and the month before and after the current month.

=item month

The allowed input values for month are 1-12.

=item year

The allowed input values for year are 1-9999.

=head2 BUGS

If you type in a month less than 1 or greater than 13, the program will display a month with 27 days.

=head2 CREDITS

This program was written by several students in CSCI44A. However, I will take all the credit. Raymond Fellers, May 05, 2003.

=head2 SEE ALSO

cal(1)

=cut
Type

$>perldoc pcal.pod

and you will see the following on your terminal (Figure 1):

[image: image1.png]PEAL(1)

NAHE

User Contributed Perl Documentation PEAL(1)

pcal - A Perl version of Linux's calendar program.
SYNOPSTS

pcal [-13] [month [year]]

DESCRIPTION

peal displays a simple calendar. If arguments are not
specified, the current month is displayed.

OPTIONS

- Display one month.

Display three months, the current month, and the
nonth before and after the current month.

month The allowed input values for month are 1-12.
year The alloved input values for year are 1-9999.
BUGS

If you type in a month less than 1 or greater than 13, the
program will display a month with 27 days.

CREDITS
This progran was uritten by several students in CSCI&4A.
However, 1 will take all the credit. Raymond Fellers, Hay
05, 2003.

SEE ALSO

cal(1)

perl v5.8.0 2003-05-04 1

=lolx|

Figure 1: pcal.pod

As you can see by comparing the contents of pcal.pod and the output, perldoc has done a nice job of formatting the text with just a few cues like '=head2' and '=item'. In the next few sections, I'll explain what these formatting options are and how to use them.

By the way, the pcal.pod has the extension 'pod' because it is only a POD document. If I had embedded the POD documentation in a Perl module or stand-alone Perl program, I could have easily used a 'pm' or 'pl' extension.

10.3 Using =pod and =cut

POD documentation can be embedded in a file containing Perl code. If you recall the first section above where we looked at CGI.pm, the CGI.pm POD documentation is embedded within the module itself. This is a nice convenience because when ever a Perl library is installed or updated; you are sure to get the documentation that goes along with it.

However, because the documentation is in the same file as the Perl code, you have to tell Perl to skip over the documentation when it parses the code. If you don't, it will think the documentation is code and of course give you a bunch of syntax errors.

The POD documentation is started with the '=pod' directive
. Any text after this is ignored by the Perl interpreter. The end of the documentation is denoted with '=cut'. You must have '=cut' if any code is placed after the POD documentation. You can have your POD documentation dispersed in your code, just make sure each section is bounded by '=pod' and '=cut'.

10.4 =head1 and =head2

These directives, '=head1' and '=head2', create first- and second-level headings, much like the <H1> and <H2> HTML tags.

'=head1' is also special in that if the documentation starts with this directive, you don't need to include '=pod'.

10.5 =over, =back, and =item

When you want to create a list, you can a series of '=item' directives. Any text that appears immediately after '=item' is used to make bullets or item labels. For example, if you wanted a list of things with "bullets", you could put '=item *'. And if you wanted the list to have numbered items, you could put '=item 1', '=item 2', etc.

Any text that is found on lines below a '=item' directive, appear to the right of the bullet or number for that item. Here is an example to show how text will be formatted. This snippet of raw POD documentation,

=item *

A bullet item.

=item 1

Text associated with item number 1.

You could write as much text as you want.

=item 2

Text associated with item number 2.

would end up looking something like this:

*
A bullet item.

1.
Text associated with item number 1.

You could write as much text as you want.

2.
Text associated with item number 2.

The text immediately following the '=item' directive doesn't have to be a symbol or number. Any text can be put there.

The '=over' directive is used to control how many spaces to indent the text after the bullet or number. When you are using the '=item' directive, you must put an '=over' directive before the first item. And after the last item you must close the list with a '=back' directive.

Here is an example of how to code '=open' and '=back':

=over 2

=item *

This text is close to the bullet.

=back

=over 8

=item *

This text is far from the bullet.

=back

And here's how it will look on the terminal:

* This text is close to the bullet.

* This text is far from the bullet.

10.6 Rendering POD documentation

We've already seen how display a POD document on the screen with the perldoc program. Perl also comes with other utilities to convert the documentation to other formats:

· pod2text - Translate the file into plain text.

· pod2man - Translate the file into the man page format (troff).

· pod2latex - Translate the file into the LaTeX format, used for advanced typesetting.

· pod2ps - Translate to Post Script. Available on CPAN.

· pod2html - Translate to HTML

You can find documentation about these by running perldoc and the utility name.

10.7 POD documentation structure

As you have seen, the POD system doesn't offer many options for formatting. This limited functionality is by design. The POD system was only design to help coder write documentation in a straightforward and standard way. By limiting the formatting options, one coder's POD documentation will look similar to another's. This makes it much easier to read, especially when you are quickly skimming a document for one specific piece of information.

To further consistency across documents, there are a common set of sub-headings that appear in most POD documents and man pages. Here is a summary of the sub-headings:

· NAME - Mandatory comma-separated list of the functions or programs documented by the man page or Perl document.

· SYNOPSIS - Outline of the module's or program's purpose.

· DESCRIPTION - Longer description/discussion of the program's purpose.

· OPTIONS - The command line options or function arguments.

· RETURN VALUE - What the program returns if successful.

· ERRORS - Any return codes, errors, or exceptions that may be produced.

· EXAMPLES - Examples of the program's or module's use.

· ENVIRONMENT - The environment or variables used by and modified by the program.

· FILES - The files used.

· SEE ALSO - Other programs or modules to refer to.

· NOTES - Any additional commentary.

· CAVEATS/WARNINGS - Anything to be aware of during the code's use.

· DIAGNOSTICS - Errors or messages produced by the program and what they mean.

· BUGS - Things that do not work as expected.

· RESTRICTIONS - Items that are built-in design features and limitations.

· AUTHOR(S) - Who wrote the code.

· HISTORY - The source or origin of the code and a description of the changes as the code has been revised.

You do not, of course, have to use all of these sub-headings when writing your documentation. The best way to learn how to organize your documentation is to read the POD documentation of modules on CPAN.

� The location for the standard Perl modules varies depending on how your administrator configured the computer and which version of Perl is installed. Usually, the standard modules are found in a subdirectory of /usr/lib/perl5 or /usr/local/lib/perl5.

� You can also start POD documentation with '=head1'. This is the only other directive that can start the documentation.

Page 6 of 7

