CSCI44a Perl I

Name:_________________________

Fall 2002 Midterm

October 30, 2002

1. &data is a

a. scalar

b. array

c. hash

d. subroutine

e. reference

2. @data is a

a. scalar

b. array

c. hash

d. subroutine

e. reference

3. $data is a

a. scalar

b. array

c. hash

d. subroutine

e. reference

4. %data is a

a. scalar

b. array

c. hash

d. subroutine

e. reference

5. If I see $$data, then $data is a

a. scalar

b. array

c. hash

d. subroutine

e. reference

6. Which lets you skip a loop iteration

a. continue

b. break

c. next

d. skip

e. last

7. Which lets you get out of a loop

a. break

b. last

c. quit

d. exit

e. done

6. You are given this:

@days = ("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")

a. Write a for loop that prints out the days in order, one day per line.

for($i=0; $i<@days; $i++)

{

print "$days[$i]\n";

}

b. Write a foreach loop that prints out the days in order, one day per line.

foreach my $day (@days)

{

print "$day\n";

}
c. Write a foreach loop that prints out the days in reverse order, one day per line.

foreach my $day (reverse @days)

{

print "$day\n";

}
d. What is the output for this code? Be mindful of spaces.

$str = join(', ', @days);

print $str;

Monday, Tuesday, Wednesday, Thursday, Friday

7. You are given a subroutine that swaps the values of two variables. However, when you try to use it in the code below, it doesn't work because the values of $i and $j stay the same after calling the swap subroutine. The code prints this

Before swap $i=5 $j=6

After swap $i=5 $j=6

It should print out

Before swap $i=5 $j=6

After swap $i=6 $j=5

Modify the code so that it works. There is more than one way to solve this problem; Choose whichever method makes the most sense to you.

#!/usr/bin/perl -w

use strict;

my ($i, $j) = (5, 6);

print "Before swap \$i=$i \$j=$j\n";

swap($i, $j);

print "After swap \$i=$i \$j=$j\n";

exit;

sub swap {

my ($a, $b) = @_;

my $tmp;

$tmp = $a;

$a = $b;

$b = $tmp;

return;

}

Here is one possible solution to question 7:

#!/usr/bin/perl -w

use strict;

my ($i, $j) = (5, 6);

print "Before swap \$i=$i \$j=$j\n";

($i, $j) = swap($i, $j);

print "After swap \$i=$i \$j=$j\n";

exit;

sub swap {

my ($a, $b) = @_;

return ($b, $a);

}

Here is another solution to question 7 that uses references:

#!/usr/bin/perl -w

use strict;

my ($i, $j) = (5, 6);

print "Before swap \$i=$i \$j=$j\n";

swap(\$i, \$j);

print "After swap \$i=$i \$j=$j\n";

exit;

sub swap {

my ($a, $b) = @_;

my $tmp;

$tmp = $$a;

$$a = $$b;

$$b = $tmp;

return;

}

8. You are at an interview trying to get a job www.fudgedcompany.com. The hiring manager looks at your resume and notices that you've taken Perl I at Chabot College. He says, "You must really know your Perl! That's great. We used to have a hot-shot Perl programmer, Yar Srellef, but we had to let him go because he spent most of his time playing Counter-Strike. Nobody else here knows Perl so you might be a good fit. Unfortunately, Yar never documented his code so we need someone who can figure out all these programs Yar wrote. Take a look at this."

The manager hands you a piece of paper. It has this printed on it.

#!/usr/bin/perl -w

use strict;

my $file = $ARGV[0];

open(FH, "<$file") or die "$!";

my @data = <FH>;

close(FH);

foreach (@data) {

unless(/^c/i) { print; }

}

exit;

The manager looks at you and says, "Yar named this code f.pl. This is typical of his code. We don't know what it does. If you can answer these questions, you've got the job." The manager hands you another paper that has these question on it:

a. $file is initialized with $ARGV[0]. How is $ARGV[0] initialized?

$ARGV[0] is the first command line argument when f.pl is run.

b. What is FH?

It's a filehandle.

c. What is the purpose of the die statement? What is the $! for?

die will cause the program to quit if there is a problem encountered when trying to open $file. $! is a special variable that contains information telling the user why the open statement failed.

d. The foreach loop is using a hidden or implicit variable. What is the name of this variable?

$_

e. The foreach loop will print out most lines of input but not all. What lines will not be printed out?

Any line that contains a 'c' or 'C' as the first character is not printed.

i. What is the 'i' in the regular expression doing?

It turns off case sensitivity.

f. Tell me in one or two sentences what this program is doing. Also tell me how you would run f.pl from the Unix command line.

f.pl is a filter. It takes a text file as input and outputs all of the contents except for lines that begin with 'c' or 'C'. You can use this to strip out comments from old FORTRAN code (back in the day when memory was expensive, you might have to do this with big programs). Here's how you could run it

$>f.pl rocketThrust.F > rocketThrustNoComments.F

Page 6 of 6

