CSCI44A Programming Perl I

Lecture 7

10/8/2002

7 Regular Expressions

7.1 ^ and $ anchors

^ and $ are beginning and end of line anchors, respectively. The ^ anchor says that the regular expression that follows it can only match if the pattern is found at the beginning of a line.

#

Only the first string matches.

#

$str1 = "Tall ships of the British Empire ruled the seas.";

$str2 = "Big and Tall shops are located in most major cities.";

if($str1 =~ m/^Tall/) {

print "String 1 matches.\n"

}

if($str2 =~ m/^Tall/) {

print "String 2 matches.\n";

}

The $ anchor says that the regular expression that proceeds it must occur at the end of a line to match.

#

Only the first string matches.

#

$str1 = "You take the bridge, Number One";

$str2 = "One can only hope to retire rich.";

if($str1 =~ m/One$/) {

print "String 1 matches.\n";

}

if($str2 =~ m/One$/) {

print "String 1 matches.\n";

}

You can use both ^ and $ to be make sure that your regular expression matches the entire string and not just a sub-string of it.

#

Only the first string matches.

#

$str1 = "Full speed ahead!";

$str2 = "The ship rocked violently. 'Full speed ahead!' the captain cried.";

if($str1 =~ m/^Full speed ahead!$/) {

print "String 1 matches.\n";

}

if($str2 =~ m/^Full speed ahead!$/) {

print "String 2 matches.\n";

}

7.2 Special characters summary

Here is a summary of important regular expression special characters:

· \d
- Match a digit character

· \D
- Match a nondigit character

· \n
- newline

· \S
- match a non-white space character

· \s
- Match a white space character

· \t
- Tab

· \w
- Match a word character (alphanumeric characters and '_')

· \W
- Match a nonword character

· *
- Matches zero or more times

· +
- Matches one or more times

· ?
- Matches one or zero times

· {n}
- Matches n times

· {n,}
- Matches at least n times

· {n,m}- Matches at least n times but no more than m times

· ^
- Matches at the beginning of a line

· $
- Matches at the end of a lines (or before a \n at the end)

· \b
- Matches a word boundary

· \B
- Matches a nonword boundary

7.3 Using regular expressions to change strings

Not only can you use regular expressions to test for the existence of a string or string pattern, you can also change a string. Formally, if you have a string $str and it contains a sub-string $subStr1 that you want to change to $subStr2, you would write the code like this

$str =~ s/$subStr1/$subStr2/;

Notice that the expression on the right side starts with an s instead of an m. We are using the substitution operator instead of the matching operator. Here is an example where we want to fix our misspelling of 'their' to 'there'

$str = "'Their you go.";

$str =~ s/Their/There/;

You can also use the usual special characters we learned with m// to focus or broaden your matching rules. You can also use the i modifier if you don't care about the case of the string you are trying to match. i has no effect on the string you are substituting in place of the old string.

#

This prints: There you go.

#

$str = "their you go.";

$str =~ s/Their/There/i;

print $str;

If there are repeated items to change in a string, you have to include the 'g' modifier. Without it, only the first match is changed.

#

Prints out: spam, jam, jam, jam

#

$str = "jam, jam, jam, jam";

$str =~ s/j/sp/;

print $str;

#

Prints out: spam, spam, spam, spam

#

$str = "jam, jam, jam, jam";

$str =~ s/j/sp/g;

print $str;

7.4 Using () to save your match: Regular expression memory

A very common task is to use a regular expression to find a line that fits a certain pattern and at the same time use the regular expression to pull out a sub string from the matching line. Here's an example of how you might do it to print out the area codes from a list of phone numbers.

@num = ();

$num[0] = "510-123-4567";

$num[1] = "408-234-5678";

$num[2] = "650-345-6789";

$num[3] = "925-456-7890";

foreach $num (@num) {

if($num =~ m/(\d{3})-\d{3}-\d{4}/) {

print "Area code is $1\n";

}

}

This will print out

Area code is 510

Area code is 408

Area code is 650

Area code is 925

The key here are the parentheses around the \d{3}. We learned previously that a pair of parentheses can be used to group parts of a regular expression (see Section 6.5 for one example) but parentheses also have another, more powerful feature.

What ever is matched in between the parentheses is store in memory and is available for use. This data are accessible by using another one of Perl's special variables, $1. Looking at the example above, each time we go through the foreach loop and find a match, the parentheses are storing a new area code in $1.

Perl gives us the ability to store more than one piece of data each time we match a string. You can put as many pairs of parentheses as you like. The data from the first parentheses is stored in $1, the data in the second parentheses is stored in $2, and so on. Here's how we could get all of the numbers.

@num = ();

$num[0] = "510-123-4567";

$num[1] = "408-234-5678";

$num[2] = "650-345-6789";

$num[3] = "925-456-7890";

foreach $num (@num) {

if($num =~ m/(\d{3})-(\d{3})-(\d{4})/) {

print "Area code is $1, prefix is $2, suffix is $3\n";

}

}

This will print out

Area code is 510, prefix is 123, suffix is 4567

Area code is 408, prefix is 234, suffix is 5678

Area code is 650, prefix is 345, suffix is 6789

Area code is 925, prefix is 456, suffix is 7890

Perl also gives you a way to store all of the matches between parentheses in an array instead of using $1, $2, $3, etc. This is particularly convenient if you have a lot of potential matches. Here's an example of how it works.

@areaCodes = ();

$str = "510-123-4567, 408-234-5678, 650-345-6789, 925-456-7890";

@areaCodes = ($str =~ m/(\d{3})-\d{3}-\d{4}/g);

foreach $num (@areaCodes) {

print "Area code is $num\n";

}

This will print out

Area code is 510

Area code is 408

Area code is 650

Area code is 925

Notice the parentheses around $str =~ m/(\d{3})-\d{3}-\d{4}/g. This says to Perl, if there are any matches that are stored in $1 (and $2, $3, etc. if you have multiple parentheses pairs in the regular expression), take all of those data and make a list. Because we have assigned @areaCodes = (...returned list from regular expression...), all of those matched data are assigned to @areaCodes. Lastly, the g after the last slash tells the matching operator to find all possible matches. Without it, the matching operator would stop after the first good match and @areaCodes would only contain one value, 510.

7.5 Using regular expression memory with s///

You can also use () and the store values with the substitution operator. In this example we take a list of first and last names and reverse them so that they are last name first.

@names = ();

$names[0] = "Ulysses Grant";

$names[1] = "Rutherford Hayes";

$names[2] = "James Garfield";

$names[3] = "Chester Arthur";

for($i=0; $i<@names; $i++) {

$names[$i] =~ s/(\w+)\s(\w+)/$2, $1/;

}

foreach (@names) { print "$_\n" }

This will print out

Grant, Ulysses

Hayes, Rutherford

Garfield, James

Arthur, Chester

7.6 Exercises

You are the science and medical news editor for Scientific America. Every October, the Nobel committee announces the recipients for the Nobel prizes at midnight (our time) and your reporter is rushing the news reports through so the articles can appear in the morning paper. In the reporter's zeal, he has made numerous typos that you have to fix. Fortunately, he makes the same kind of typos, and you, being an expert Perl programmer decide to do all of your editing with the substitution operator s///. Here is a piece of one of his articles, errors and all:

STOCKHOLM, Sweden -- The Noble Prize in physics has been won by scientists from the United States and Japan, it has been announced. The 2002 honour, announced on Tuesday, goes to Mr. Raymond Davis, 87, and Mr. Riccardo Giacconi, 71, of the United States and Mr. Masatoshi Koshiba, 76, of Japan. They share the $1 million prize for pioneering work on astrophysics leading to the discovery of cosmic X-ray sources, the Nable academy said in its citation.

Copy this example verbatim to your code (cut-and-paste). Write code that will modify this example text to accomplish the following:

1. The reporter puts in too many spaces. Construct a regular expression that will take multiple spaces and replace it with a single space.

2. Construct a regular expression that will change the 'Mr.' to 'Dr.'.

3. Construct a regular expression that will fix the misspellings of Nobel (it's e-l, not l-e).

Page 6 of 6

