CSCI44A Programming Perl I

Lecture 1

08/28/2002

1 Scalars

Scalars are just simple values, such as a number, a character, or a string. In the following few sections I will show how to use simple scalars, scalar variables, and how to write a simple Perl program using scalars.

1.1 Numbers

Perl numbers are can be integers or floating point values.

Valid integers are numbers like

0

526

–4

Some valid floating-point numbers are

0.5

-3.1456

2.2026e27

1.2 Operators for Numbers

Perl has the usual addition, subtraction, multiplication, and division operators

2 + 3

equals 5

5 – 2

equals 3

2.5 * 3

equals 7.5

10/3

equals 3.333333….

Perl also has the FORTRAN-like exponential operator

2 ** 4

equals 2 * 2 * 2 * 2 or 16

and the modulus operator that returns the remainder of an integer division, just like in C

10 % 3

equals 1

10.5 % 3.2
equals 1 (10.5 % 3.2 is computed

as 10 % 3)

16 % 8

equals 0 (there is no remainder

#for 16/8)

Perl also has the same comparison operators as in C

==

Equal

!=

Not equal

<

Less than

>

Greater than

<=

Less than or equal to

=>

Greater than or equal to
When you use a comparison operator, it returns a true or false value. If you don't why you need a true or false, hang on. You'll see how to use these soon. Here are some examples

5 == 5

This is true

5 == 4

This is false

5 != 4

This is true

5 > 4

This is true

1.3 Strings

Strings are just a collection of characters (numbers, letters, and symbols) bracketed with either single quotes (') or double quotes (").

Some valid strings are

"Hello world!"

'a'

"-3.1456"

A number can be treated as a number or a string depending on how you use it in your Perl code.

1.4 String operators

Two important string operators are the concatenation operator and the string repetition operator.

The concatenation operator is a '.' (a period) and combines strings together.

"hello"."world"
same as "helloworld"

"hello"." "."world"
same as "hello world"

The string repetition operator is an 'x' proceeded by the string to repeat and followed by an integer designating how many times to repeat the string.

"hello" x 3

same as "hellohellohello"

1.5 Scalar variables

Scalar variables are variables that hold a number or string (or nothing if you haven’t defined it yet). Scalar variables have the form of a '$' preceeding the variable name like

$accountType

$accountBalance

Use an '=' to assign a value to the variable

$accountType = "checking"

$accountBalance = 347.08

1.6 Example Program

Type in this simple example into a file exactly as it appears and run it on your computer.

#/usr/bin/perl

Example 1.4a

#

use warnings;

$accountType = "Checking";

$accountBalance = 347.08;

print $accountType;

print $accountBalance;

exit;

Your output should be

$>perl Example1.4a.pl

Checking347.08$>

We've printed out the two scalar variables we've defined but the formatting is less than desirable. Let's clean it up a little.

Now type in this simple example on your computer and run it.

#/usr/bin/perl

Example 1.4b

#

use warnings;

$accountType = "Checking";

$accountBalance = 347.08;

print "Your $accountType account balance is $accountBalance dollars.\n";

exit;

Your output should be

$>perl Example1.4b.pl

Your Checking account balance is 347.08 dollars.

$>

Much nicer now.

Q: Remove the quotes around "Checking". What happens? Why?

Q: Put double quotes around 347.08. What happens? Now try single quotes. Now what happens?

Q: Change the double quotes in the print statement to single quotes. What happens?

1.7 Double quoted strings vs. single quoted string

We strings are bracketed by either double quotes or single quotes. There is a reason why you would want to use one or the other.

Double quotes

Double quotes will automatically interpolate (i.e. substitute) the values of variables and backslash escapes into the string.

$accountType = "Checking";

$accountBalance = 347.08;

print " Your $accountType account balance is $accountBalance dollars.\n";

Will print out

Your Checking account balance is 347.08 dollars.

$>

Perl interpolated the variables $accountType and $accountBalance before it printed the string. It also interpolated the newline escape "\n".

Because double quoted strings interpolate backslash escapes, you have to put in double backslashes to get the backslash to print out.

print "c:\dir\subdir\n";

print "c:\\dir\subdir\n";

prints out

c:dirsubdir

c:\dir\subdir

Single quotes

Single quoted strings are treated literally, that is, there is no variable interpolation. Escaped characters are treated literally too.

$accountType = "Checking";

$accountBalance = 347.08;

print " Your $accountType account balance is $accountBalance dollars.\n";

Will print out

Your $accountType account balance is $accountBalance dollars.\n$>

To use a single quote in a single quoted string, use a backslash escape.

print 'Today\'s lesson is on scalar variables';

1.8 Backslash Escapes

Here is a summary of some common backslash escapes.

\n

Newline

\t

Tab

\\

Backslash

\"

Doublequote

\'

Single quote
1.9 More number operators: Binary and Unary operators

Without binary operators, when you want to change the value of a variable you would do this

$a = 3;

$a equals 3

$a = $a + 1;
add 1 to $a, $a now equals 4

A more compact and preferred way to change a variables value is to use a binary operator

$a = 3;

$a equals 3

$a += 1;

add 1 to $a, $a now equals 4

In case you didn't know, it's called a binary operator because this operator requires two elements, the variable $a, and the value to add to $a, 1.

There are also binary operators for subtraction, multiplication, and division.

$a -= 2;

same as $a = $a – 2

$a *= 3;

same as $a = $a * 3

$a /= 2.2;
same as $a = $a / 2.2

The two unary operators you need to know are the autoincrement and autodecrement operators

$a++;

same as $a += 1

$a--;

same as $a -= 1

You will be using these operators a lot when we start using loops.

1.10 <STDIN> as a scalar value or how to read in user input

When you use <STDIN> in Perl, it means read in all the text from standard input up to and including the newline character and convert that input into a scalar. Here is an illustrative example

#!/usr/bin/perl

Example1.10

#

use warnings;

print "Type in a number and press ENTER\n";

$userInput = <STDIN>;

chop($userInput);

print "You entered $userInput!\n";

exit;

When you run it, you should get something like this

$>perl example1.10.pl

Type in a number and press ENTER

10.7

You entered 10.7!

chop() is a built in Perl function that "chops" of the last character of a string. We call chop($userInput) to chop off the newline character that is included in the string; the newline comes from the user pressing the ENTER key.

Q: What happens if you comment out the chop($userInput) in the example? What happens if you call chop($userInput) twice in a row?

1.11 Exercises

1. Write a program that computes the circumference of a circle with a radius of 12.5. The circumference is 2(times the radius, or about 2 times 3.141592654.

2. Modify the program from the previous exercise to prompt for and accept a radius from the person running the program.

3. Write a program that prompts for and reads two numbers, and prints out the result of the two numbers multiplied together.

4. Write a program that reads a string and a number, and prints the string the number of times indicated by the number on separate lines. (Hint: use the "x" operator).

Page 1 of 7

