CSCI44A Programming Perl I

Lecture 0

8/20/2002

0 What is Perl?

Perl is a high-level programming language with an eclectic heritage written by Larry Wall and a cast of thousands. It derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the Unix shell, and at least a dozen other tools and languages.

Perl's process, file, and text manipulation facilities make it particularly well-suited for tasks involving quick prototyping, system utilities, software tools, system management tasks, database access, graphical programming, networking, and world wide web programming. These strengths make it especially popular with system administrators and CGI script authors, but mathematicians, geneticists, journalists, and even managers also use Perl.

One interesting thing you'll see as you learn Perl is that Perl is a TMTOWTDI (There's More Than One Way To Do It) languange. What do I mean by this? Well, in other established languages like C, C++, and Java, when you want to accomplish a particular task, the way you would code it is probably how others would do it. For example, if you wanted to copy the square of all of the numbers from one array to another, everyone would naturally use a for loop like this

for (i=0; i<arrayLength; i++) {

newArray[i] = oldArray[i] * oldArray[i];

}

In Perl you can do it this way too

for ($i=0; $i<$arrayLength; $i++) {

$newArray[$i] = $oldArray[$i] * oldArray[$i];

}

Simple enough, right. But you can also do it this way

$i = 0;

foreach $number (@oldArray) {

$newArray[$i] = $number * $number;

$i++;

}

or

$i = 0;

foreach (@oldArray) {

$newArray[$i++] = $_**2;

}

or even

@newArray = map { $_**2 }, @oldArray;

Because Perl lets you write your code in so many varied ways, it gives you the flexibility to write the code in the way that you want, in the way you think. It also lets you write code very compactly as the last statement above shows. This lets you write useful code very quickly.

The downside, however, is that because "there's always more than one way to do it", someone elses Perl code may baffle you; it may look like a different language. Fortunately, as you learn and use Perl, you will become accustomed to Perl's idioms and other people's coding style. When we learn Perl in this class, I will tend to use a more straight forward, maybe more C like, coding style.

0.1 Let's get started

The fastest way to learn Perl is to start writing code. To start, you have to login in to a Unix computer that has Perl or install Perl on your own computer.

Logging in to the Linux server from within the Chabot computer lab

· Login to one of the Windows computers using your student account (for the first few weeks you can use "student" as the user name and "chabot" as the password.

· There should be a SSH Secure Shell Client icon on the desktop. Double click on it.

· Click on the Quick Connect button.

· When a dialogue box comes up asking for remote host info, enter your Linux account username and linux.cschabot.org for the host name.

· If a dialogue box comes up asking about a public key, click yes.

· Enter your Linux account password when prompted. You should now be logged in.

· Once logged in, type "perl –v" on the command line. You should an output containing information about the version of Perl on the machine and a bunch of other stuff. If so, you are ready to go. If nothing appears or you get an error message, you need to add "/usr/bin/perl" or "/usr/local/bin/perl" to your $PATH variable in your .bashrc.

To login from home, you can get instruction and download the software from the class website (http://www.geocities.com/csci44a/).

0.2 Elements of a Perl program.

Type these two lines in your text editor and save it to a file called "helloWorld1.pl". Make sure you type it in exactly as it appears.

print ("Running Example 1.\n");

print ("Hello World!\n");

You can run this code by passing the file to the Perl interpreter as a command line argument

$>perl helloworld.pl

Perl will read in the file and run each line in turn.

If you are familiar with C or C++, you will notice that the syntax looks very similar such as the '\n' for a new line and the semi-colon at the end of each line. As you will see in the next few lectures, other parts of Perl look like C/C++.

0.3 Elements of a Perl program. #!

Type in the following and save it to a file called "helloWorld2.pl".

#!/usr/bin/perl

print ("Running Example 2.\n");

print ("Hello World!\n");

exit(0);

Now try running the code this way

$>helloWorld2.pl

It should run without any problems. If you typed it in correctly and it still doesn't run, type this in the command line.

$>chmod +x helloWorld2.pl

Why didn't I have to type 'perl helloWorld2.pl'? If you type in the name of file on the command line, your operating system shell opened the file and looked at the first line for the shebang operator, #!, and passed the file to the executable listed after the #!.

#!/usr/bin/perl

in the file is equivalent to typing

$>/usr/bin/perl helloWorld2.pl

The Perl statement exit(0); is just like it's C counterpart. It tells Perl to exit the code in helloWorld2.pl and send a signal of '0' to the calling process (in this case the Unix shell). By convention an exit value of '0' signifies that the program ran successfully and any other value, usually '1', signifies that there was a problem. If this doesn't doesn't make much sense right now, don't worry. The exit statement is optional in Perl. We'll come back to it in a future lecture.

0.4 Elements of a Perl program. Comments

Edit "helloWorld2.pl" to look like this and save it as "helloWorld3.pl"

#!/usr/bin/perl

#

Example 3

#

print ("Running Example 3.\n"); # print first line

print ("Hello World!\n"); # print second line

exit(1);

When you run this program, the output will look the same as helloWorld2.pl.

Comments are started with a #. The # can appear at the beginning of a line or after a Perl statement. Get in the habit of using comments.

0.5 Elements of a Perl program. Parentheses are usually optional.

The following code is perfectly valid (try it yourself)

#!/usr/bin/perl

#

Example 4

#

print "Running Example 4.\n"; # print first line

print "Hello World!\n"; # print second line

exit 0;

Compared to C/C++, Perl is much more forgiving or varied in it's syntax. When you leave out the parentheses when calling Perl's built-in functions, Perl usually knows what you mean. Whether or not you put them in is a matter of personal preference. Often, advance Perl programmers will leave them out.

0.6 Elements of a Perl Program. Directives

Perl can be very forgiving, letting you write bad code and still give the correct results. But then again, bad code usually doesn't give the correct result and can be hard to debug. If you use the –w and use strict; Perl will warn you when your code may cause problems. Here is how you use them in your code.

#!/usr/bin/perl -w

#

Example 5

#

use strict;

print "Running Example 5.\n"; # print first line

print "Hello World!\n"; # print second line

exit 0;

We can't go into details about these directives this early in the course. For now, just use these in all of your codes.

0.7 Perldoc

Aside from your book, there are numerous source of Perl information. One of the most convenient sources is the documentation that comes with Perl. To get at this information, use the perldoc utility. There are many guides in the Perl documentation. To see a list

$>perldoc perl

You'll see a list of perldoc guides. To read one of the guides, just type in the name after perldoc. For example, to look at the "Perl data structures" document explaining the difference between scalars, arrays, and hashes

$>perldoc perldata

You can also get information on Perl's built in functions by using the –f option and typing in the name of the fuction. For example, you can read about the exit function with this

$>perldoc –f exit

The Perl FAQs (Frequently Asked Questions and answers) also provide a wealth of information. You can access each chapter by typing the chapter name directly

$>perldoc perlfaq2

If you don't know which chapter to look at, you can see the FAQ contents by looking at the perlfaq doc

$>perldoc perlfaq

The FAQs can also be searched by keyword using the –q option. For example, if you wanted to see questions related to arrays, type in this

$>perldoc –q array

or

$>perldoc –q arrays

0.8 Perl documentation, news, code, and forums on the Web

Here are a couple of websites dedicated to all things Perl

http://www.perl.org

http://www.perl.com

This site is mainly dedicated to advance topics but there are some really good tutorials. This site is useful for beginners because you get to see many varied uses of Perl and you'll get exposure to some advance coding methods

http://www.perlmonks.com

All of the perldoc documents are here. You might prefer this over reading the documentation in a terminal window

http://www.perldoc.com

CPAN (Comprehensive Perl Archive Network). This is THE central repository for Perl code. If you have a major project and need to write a lot of code, check here first. Chances are someone has done much of the work for you.

http://www.cpan.org

0.9 Home work

1. In the computer lab, log into the Chabot Linux server and try the examples in this lecture.

2. At home, install a SSH client and make sure you can log into the Chabot Linux server. Make sure the examples you typed in run.

3. Install the ActiveState Perl package. You don't need to do this if you are going to SSH to the Chabot Linux server to do your homework.

Page 2 of 6

