CSCI44A Programming Perl I

Lecture 6

9/30/2002

6 Regular Expressions

6.1 Exact string matching

If you are comparing strings, you can test for an exact match by using the eq comparison operator. This code example will print out a sentence.

$str1 = "misty";

if($str1 eq "misty")

{

print "String 1 matches 'misty'.\n";

}

Now what happens if you have strings like this?

$str1 = "Misty";

if($str1 eq "misty")

{

print "String 1 matches 'misty'.\n";

}

Or this?

$str1 = "Far over the misty mountains cold";

if($str1 eq "misty")

{

print "String 1 matches 'misty'.\n";

}

Well, of course, these two previous examples won't print anything because the strings don't exactly match 'misty'.

But maybe you don't want to test for an exact string match. Perhaps you want tests that are a little less stringent, such as "does this string contain the word 'misty' anywhere in it", or "does this string contain 'misty' or 'Misty'" (difference in capitalization)? So how do you do it? You do it with regular expressions!

6.2 Simple string match

If you want to test to see if a string is contained with another string, you can use the match operator. The match operator has the general form

$string_1 =~ m/$string_2/

where we are testing to see if $string_1 contains $string_2. Let's examine the syntax. The =~ operator (I don't know if this has a name) says that the entity on the right side is a string matching operation. Notice the tilde after the equals sign. If you don't have the tilde, you'll end up assigning a new value to $string_1. The actual matching operator starts with an m, for 'matching', followed by a forward slash, /, the string or pattern that you want to find, and ending with another forward slash.

Here's how you use the matching operator in an if statement.

$str1 = "Far over the misty mountains cold";

if($str1 =~ m/misty/)

{

print "String 1 contains 'misty'.\n";

}

If $str1 contains 'misty', the whole matching condition evaluates to '1' (a true value). If the string didn't contain 'misty', the match would return an undef (a false value).

6.3 The \w and \W modifiers

Imagine that you have the task of going through an electronic dictionary and have to find all the word that have at least four letters and contain ‘all’. With the matching operator and the regular expression character \w, you can print out all words that match this condition.

#

@words contains all the words in a dictionary

#

foreach $word (@words) {

if($word =~ m/\wall/) {

print “$word matches.\n”;

}

}

The above code will print out words like ‘ball’, ‘call’, ‘fall’, and ‘mall’ but not words like ‘all’ or ‘full’. Let’s look at how this regular expression works. The special character, \w, tells the matching operator to look for a single word character (an alphanumeric character or underscore) followed by ‘a’, ‘l’, and ‘l’. If something like ‘+all’ were in the dictionary, it would not match since ‘+’ is not a word character.

Now if we wanted to match a nonword character, anything except an alphanumeric character or underscore, we would use a \W (notice that it’s a capital W). The following example would match “y’all” and y@all but not “yiall”.

foreach $word (@word) {

if($word =~ m/y\Wall/) {

print “$word matches.\n”;

}

}

6.4 Restricting your string match with \b and \B

In the previous section, the regular expression \wall will match such words as ‘fall’ but it will also match ‘fallen’ and ‘stall’. What do you do if you want to restrict the matches four letter words that end in ‘all’ so that ‘fallen’ and ‘stall’ wouldn’t match? The key is to use the word boundary character, \b, in your regular expression to tell the matching operator how matching word should start and end. Here is regular expression that matches ‘tall’ but not ‘stall’ nor ‘taller’.

$str =~ m/\btall\b/

The \wall part is the same as before. The first \b says that the ‘t’ must appear after a word boundary. No letter can appear before the ‘t’. And the second \b says that the second ‘l’ must be before a word boundary. Not letter can appear after the ‘l’. This regular expression will also match strings such as “He is tall. I am short.”, “tall and proud they are.” However, it won’t match “The tallest trees are the oldest” nor “stalling only delays the inevitable”.

So what exactly is a word boundary? A word boundary is that imaginary space around words that tell you, and Perl, that a particular string is a word and not just part of a word. A word boundary used at the beginning of a word, such as \btall, means that the ‘t’ is preceeded by something that is not a \w such as a space. It also means that the ‘t’ can be the first character of a string, that is, it’s the first word in a sentence. When you have a word boundary at the end of the string, such as tall\b, it means that the ‘l’ must be followed by something that is not a \w such as a space, comma, period, or the end of the string. Note that the \b is actually matching any specific character, it’s just matching the imaginary boundary around a word.

Now if you wanted the opposite behavior, that is to match a string without word boundaries, you use \B. The following will match “stall all you want” but not “big and tall”.

$str =~ m/\Btall/

6.5 Limiting your match with |

In regular expressions, |, acts as an ‘or’. The following will match ‘fall’ or ‘tall’ but not ‘ball’ nor ‘call’.

$str =~ m/fall|tall/

Here we haven’t put word boundaries so this regular expression can also match ‘fallen’ and ‘taller’. If we truly want to restrict the match to ‘fall’ and ‘tall’, use \b like this.

$str =~ m/\b(fall|tall)\b/

The parentheses tell Perl that you want to match \bfall\b or \btall\b. If you left out the parentheses, Perl would try to match \bfall or tall\b.

6.6 Limiting your match with []

If you are attempting to match a few strings and they only differ by one character, there is another way you could write your regular expression.

$str =~ m/\b[ft]all\b/

The pattern [ft] means that the character before the 'a' can either be an 'f' or 't' and nothing else. This will match 'fall' or 'tall' as before. We can put any number of characters in between the square brackets like so.

$str =~ m/\bf[aeiu]ll\b/

This pattern will match 'fall', 'fell', 'fill', and 'full'.

[] also uses ^ as a negation modifier as the first character between the brackets to prevent matches of certain characters. Here's how you could match any word that fit the pattern f-ll where the hyphen is any character except 'a'.

$str =~ m/\bf[^a]ll\b/

This pattern would not match 'fall'. You can also extend it to explicitly not match 'fall' and 'fell' by adding an 'e' in the appropriate place.

$str =~ m/\bf[^ae]ll\b/

6.7 Matching digits

We saw how \w could match any alphanumeric character. If we want to restrict ourselves to digits, we can use \d. The following will match a single digit number.

$str =~ m/\b\d\b/

If you want to match a multi-digit number, just repeat \d in the pattern. If you are looking for a four digit number, you can use this.

$str =~ m/\b\d\d\d\d\b/

Here's a pattern that will work with phone numbers.

$str =~ m/\b\d\d\d-\d\d\d\d\b/

And, just like \w vs. \W, we can match non-digits using \D.

I didn't mention it before but you can repeat any of the special characters. If you wanted to match a four letter word (but don't tell your mom!), you could use this regular expression.

$str =~ m/\b\w\w\w\w\b/

6.8 Matching a controlled number of characters

We saw that we could match a multi-digit number by repeating the \d special character. But let's say we want to match any number but we don't know how many digits there might be. For example, let's assume that we are running an electronics parts warehouse and all of the parts start with 3 letters and are followed by one or more digits. Let's us also assume that you have to go through the entire inventory and print out all of the capacitor part numbers in the inventory. Fortunately all of the capacitor part number start with 'cap'. So to print out that data we can use this.

foreach $partNumber (@allPartNumbers)

{

if($partNumber =~ m/cap\d+/)

{

print "Capacitor part number: $partNumber.\n";

}

}

The + in the above regular expression modifies the \d and says there must be one or more \d's. 'cap142' will match, as will 'cap1' and 'cap239835203'. 'cap' won't match as it doesn't have at least one digit.

Now if you want to change the match criterion to match any number of digits, including none at all, then use an * instead of a +. The following regular expression will match 'cap', 'cap1', and 'cap239857'.

$str =~ m/cap\d*/

If you want to specify a range for the number of characters to match, put the upper and lower bounds between curly braces. This regular expression will match a capacitor part number that has 4 to 8 digits.

$str =~ m/cap\d{4,8}/

6.9 The any character, .

If you want to match a character, any character whatsoever, including a space, use a period in the regular expression.

$str =~ m/f.ll/

This regular expression will match 'fall', 'fell', 'f3ll', 'f%ll', 'f ll', 'f.ll', etc.

6.10 Matching special characters

When you read the previous section you may have asked yourself, "If a period matches any character, how to I match a period explicitly"? When you want to match a character that has a special meaning in regular expressions, like ., +, *, [, and], you proceed the character with a backslash to escape it.

This regular expression will match 'fall' with a period after it.

$str =~ m/fall\./

This regular expression will match a five digit number with two digits after the decimal place (e.g. 123.45)

$str =~ m/\d\d\d\.\d\d/

And this regular expression will match two numbers that are being added together such as 34+2 and 127+35235.

$str =~ m/\d+\+\d+/

This last one may confuse you because it has so many +'s in it so I'll explain how it works. The first part is \d+, which means match a number with one or more digits. The second part is \+ which matches a +. And the last part is \d+ which also matches one or more digits.

6.11 Matching modifiers: Case insensitivity

Image you have a program that asks the use to type in a yes or no answer. You could test the answer for a 'yes' with this regular expression.

print "Do you want to continue?";

chomp($answer = <>);

if($answer =~ m/yes/) {

... some code ...

}

This will match 'yes'. However, if they type 'YES' or 'Yes', it won't match even though it's clear they meant 'yes'. You can prevent this kind of mistake by telling your matching operator that you don't care about the case (uppercase vs. lowercase) of the letters in the pattern. The way you turn this feature on is to put an i after the second /.

print "Do you want to continue?";

chomp($answer = <>);

if($answer =~ m/yes/i) {

... some code ...

}

This revised code will now match 'yes', 'Yes', 'YES', 'YeS', 'yES', etc.

6.12 Exercises

For the following exercises, you'll need to get the electronic dictionary and save it to a text file as you will need a lot of words to test your regular expressions. Do the following to save the dictionary of words to a text file called 'dictionary.txt' on the class Linux server.

$>aspell --dump master > dictionary.txt

1. Create a program that will print out all of the words that begin with 'th'.

2. Create a program that will print out all of the words that end in 'th'.

3. Create a program that will print out all words that contain a 'th' but that do not start with 'th' nor end with 'th' (e.g. fathom).

4. Create a program that will print out all words that start with 'th' and are followed by 1 to 3 letters (i.e. the, thee, and there will print out, but not thesaurus).

Page 7 of 7

