CSCI44A Programming Perl I

Lecture 5

9/24/2002

5 Hashes

A hash is like an array but much more versatile and powerful in many situations. Fundamentally, a hash is an array except that the indices aren't restricted to integers; they can be a string. However, this little fact alone doesn't begin to describe how useful hashes are.

5.1 Using an array like a hash

Let's say you are a physical trainer to the stars and would like to write a Perl program to store data such as name, height, weight, age, etc. of your clients. Let's also say you currently have 3 clients but you may acquire more or loose some over the course of using this program. Lastly, let's say your Perl expertise only covers material up to the previous lecture.

Your first inclination might be to write a program that stores you clients' information into arrays like this

#

My clients

#

$burton = 0;

$fonda = 1;

$tracy = 2;

Full names

@names = ("Richard Burton", "Henry Fonda",

"Spencer Tracy");

Height in inches

@height = (72, 68, 60);

Weight in pounds

@weight = (225, 160, 140);

Age

@age = (55, 49, 64);

... and so on...

Notice that we've created scalar variables out of the clients' last names and assigned numbers to them. These numbers are the indices of the array elements of the arrays we've assigned above. By storing the client data this way, we've gain the convenience of being able to access a client's information by using their last name like this

$height = $height[$burton];

$weight = $weight[$fonda];

$age = $age[$tracy];

As you can see, the comments are superfluous. Without them, we still know who's height, weight, and age we are assigning. If we didn't have the last name variables associated to integers representing the array indices, we would have to use less obvious variables or literal integers like this

$height = $height[0];

$person = 2;

$weight = $weight[$person];

$age = $age[1];

In the last example, it's much harder to discern who's height, weight, and age we are looking at especially if the program is long.

Using surname variable names this way to makes the code self-documenting (i.e. we need fewer comments to explain our code) and other programming tasks easier. However, some important pitfalls or limitations remain. As we add clients, our arrays grow and we have to add more surname variables to index those arrays. Keeping track of the name to index association becomes tedious and error prone as our list becomes longer. Furthermore, as we add clients, we are probably going to also lose clients so elements in all of these arrays are going to become useless data that take up valuable memory. We can eliminate such dead weight by collapsing* the arrays but then we'll find many of the client indices have changed so our surname to index association breaks down. We can save ourselves in this situation by using a hash.

* You can get rid of elements in the middle of an array by copying the desirable elements to a new array or you can use Perl's built in splice function.

5.2 Introduction to Perl's hash

The simplest way to create and assign values to a hash is similar to arrays. Here's how to create an array and assign values to it

Assign ages to the age array

@age = ();

$age[0] = 25;

$age[1] = 19;

$age[2] = 64;

And here's how to do something similar with a hash

Assign ages to the age hash

%age = ();

$age{"burton_richard"} = 55;

$age{"gable_clark"} = 49;

$age{"spencer_tracy"} = 64;

Differences between a hash and array are that a hash is preceded by a %, you use curly braces, {}, instead of square brackets, [], and the index is a string. This last part is the most important since the string can be anything meaningful to us; we aren't forced to thing of integers to know how the data in our hash is organized.

The string between the braces is known as the 'key' and the data that the hash element holds is the 'value'. In the above example, 'burton_richard' is one key and 55 its value. Keys and values are tied together so you will frequently hear the term 'key-value pairs' when talking about hashes. You'll notice in many of the examples in the Lecture, keys will have single or double quotes around them, or sometimes no quotes at all. Which you put doesn't really matter if you are using string literals. I tend to use double and single quotes interchangeably. The only time it makes a difference is if the key is a variable and you are trying to control variable interpolation (see Lecture 1 for variable interpolation).

The keys can be made up of the same characters you use for variables names (alphanumeric characters, underscores, and periods). Of course you can use variables as keys like this

$key = 'burton_richard';

$age{$key} = 55;

$firstName = 'richard';

$lastName = 'burton';

$age = $age{$lastName.'_'.$firstName};

5.3 Assigning a hash using a list

You can initialize a hash using a list

%age = (
'burton_richard',
55,

'gable_clark',
49,

'spencer_tracy',
64

);

All of the list elements with even indices (i.e. 0, 2, 4) become the keys, and the elements with odd indices become their corresponding values. Note that since a hash is built upon key-value pairs, the list has to have an even number of elements. If you have an odd number of elements, you'll get an error message. Note that this also means you can assign a hash using an array.

Hashes can also be assigned with the => operator with the keys on the left side of the => and values on the right.

%age = (
'burton_richard' => 55,

'gable_clark' => 49,

'spencer_tracy' => 64

);

These two methods are functional equivalent but I prefer the later as I think it makes it easier to spot a missing key or value when the list is long.

You can also assign hashes using other hashes

%ageMen = %age;

%ageMen = ('burton_richard' => 55, %otherAges);

%ageMen = (
'burton_richard' => 55,

'gable_clark' => 49,

'spencer_tracy' => 64

);

%ageWomen = (
'taylor_elizabeth' => 37,

'leigh_vivian' => 33,

'hepburn_katherine' => 59

);

%ageAll = (%ageMen, %ageWomen);

5.4 Looping through a hash

There are three simple ways you can loop through a hash. The method you choose depends on whether or not you want the keys, the values, or both the keys and values.

If you want the keys, you use the keys operator on the hash in a foreach loop. keys returns a list of all of the keys in a hash.

#

print out the names of the men

#

foreach $key (keys %ageMen) {

print "Name: $key\n";

}

For the values, the corresponding operator is values
#

print out the ages of the men

#

foreach $value (values %ageMen) {

print "Age: $value\n";

}

If you want both the keys and values, you can use keys in a foreach loop and access the values with the keys

#

print the names and ages of the men

#

foreach $key (keys %ageMen) {

$age = $ageMen{$key};

print "$key is $age years old.\n";

}

You can also get the key-value pairs of a hash with the each operator. When you operate each on a hash, it returns a key-value pair as a list and will keep returning key-value pairs of the hash each time you call each, until you've gone through all of them. Once you've gone through all of them, each returns an undef. This property makes each quite useful in a while loop.

#

print the names and ages of the men

#

while(($key,$value) = each(%ageMen)) {

print "$key is $value years old.\n";

}

5.5 Hash order

If you've tried any of the examples in the previous section, you might have noticed that the names and/or ages are not printed out in the order they were initialized. The reason is that while Perl will never break the key-value pair association, the set of pairs is not necessarily stored in any predictable order nor stored in contiguous memory. To us, it looks like Perl has scrambled all of the key-value pairs. Why does Perl do this? Wouldn't it make more sense to have Perl preserve the order, like arrays, in case I depend on that order?

Perl doesn't 'scramble' the hashes. Actually, Perl sorts the key-value pairs and and finds places to put them in memory using very sophisticated algorithms. Discussion of these algorithms is beyond this class (and beyond your instructor's expertise) but in a nutshell, these algorithms organize the hash data so that Perl can efficiently search through the hash. As a by-product of these algorithms, the key-value pairs are not stored in memory in the same order they are initialized. Fear not. If preserving the order is necessary, there are Perl libraries that can help (but this is a topic for Perl II).

If you do need to make some order out of your hash, or rather order of the hash keys or values as you access them, you can use the sort operator on the hash keys or values operators. Here's how you would get the names out in alphabetical order.

#

print out the names of the men in alphabetical order

#

foreach $key (sort keys %ageMen) {

print "Name: $key\n";

}

What is happening here is that keys produces a list of the keys of %ageMen. This list is then passed to sort, which then produces a sorted list of names which foreach iterates through. It might be a little clear if written this way

foreach $key (sort(keys(%ageMen))) {

print "Name: $key\n";

}

5.6 Testing for the existence a hash key

You can create a key-value pair for an existing hash simply by creating a unique key.

#

Add another key-value pair to the %age hash

#

$age{'fonda_jane'};
key-value pair now exists but

its value is undef

$age{'fonda_peter'} = 33;

When you want to create a new key-value pair, you have to be careful since if you accidentally use an existing key, you will overwrite the current value.

#

Add Henry Fonda's grandson, also named Henry

#

$age{'fonda_henry'} = 12;
oops, accidentally wrote

over Fonda Sr.'s age

If you want to see if a particular key is in use, use the exists operator.

#

We need to find a unique key for the grandson.

See if fonda_henry_2 is already being used.

#

if(exists $age{'fonda_henry_2'}) {

print "fonda_henry_2 is not available.\n";

print "Try another.\n";

}else{

$age{'fonda_henry_2'} = 12;

}

5.7 Deleting a hash element

Deleting a hash element is easy. Just use the delete operator.

delete $age{'fonda_henry'};

Once you call delete on a hash element, the key and value are gone for good and the memory consumed by the element is available for something else.

Incidentally, you can also call delete on an array element. delete will empty out the array element but the element still exists (it's just empty) so the array length will be unchanged. If you want to eliminate array elements and have the array shrink, you need to use the splice operator (learning how to use splice is left to the reader).

5.8 Hash tricks

Hashes are great for storing data as we have seen above. But so far we have only scratched the surface of the hash's usefulness. As you will see in the following examples, hashes can be used in unexpected ways that can really simplify complicated tasks.

5.8.1 Unique values

Let's say you have an array, @a, that is fill with integers, and some of the integers appear more than once

@a = (42, 3847, 38, 42, 998, 20, 3, 38, 1123, and so on);

and you want to create an array that only contains single copies of each of those integers, that is no duplicates. You can do this easily with a hash.

#

@a contains a collection of integers with many

repeated numbers

#

@b will contain only single copies of the integers in @a

#

%tmp is just a temporary hash to do our work

#

%tmp;

foreach $num (@a) { $tmp{$num}; }

@b = keys(%tmp);

5.8.2 Counting values

Now let's say you want to count how many times a particular integer appears in @a.

%tmp;

foreach $num (@a) {

if(exists $tmp{$num}) { $tmp{$num}++; }

else{ $tmp{$num} = 1; }

}

foreach $num (keys %tmp) {

print "$num appears $tmp{$num} times.\n";

}

5.9 Exercises

1. Write a program that stores your important telephone numbers in a hash and let's you get the phone number by typing in a name.

Page 8 of 8

