CSCI44A Programming Perl I

Lecture 4

9/17/2002

4 Basic I/O (input/output)

In this lecture we will review how to read from standard in, how to print output to standard out and standard error. We will also learn how to read data from a file and how to write data to a file.

4.1 Reading from standard in with <STDIN>

Previously we learned that you can read in a single line of input from the Unix shell by assigning <STDIN> to a scalar variable

print "Type in your name and press ENTER.\n";

$name = <STDIN>;

print "Your name is $name.\n";

And if you want to read in a series of scalars, you can assign <STDIN> to an array

print "Type in the name of each enrolled student.\n";

print "Press ENTER after each name.\n";

print "Type ctrl-D when you are finished.\n";

@names = <STDIN>;

foreach $name (@names) {

print "$name is enrolled in this class.\n";

}

4.2 Reading from a file with <STDIN>

You can read data from a file using <STDIN> by using the Unix shell redirection operator, '<', or pipe, '|'. The way you use the redirection operator is as follows. Assume you have Perl program that reads a list of names from standard in. The program is called readNames.pl and is similar to the second example of Section 4.1. Also assume you have a list of names, one name per line, in a text file called listOfNames.txt. readNames.pl will read the text file if you run it from the command line like this

$>readNames.pl < listOfNames.txt

When you do this, the Unix shell sees the redirection operator and looks at the file name immediately after it. The redirection operator tells the shell to read the contents of the text file and feed them to the Perl code via standard in. Your Perl code doesn't know that the data is coming from a file; it could be from a file or from you typing in the input manually. Your Perl code just sees the data coming from <STDIN>.

Because Perl doesn't know the difference between input from a file or from an interactive user, you can use this to your advantage when writing long programs. Imagine you are writing a program that asks a user a lot of questions; say a tax calculation program that asks many questions about your bank accounts. When you are developing your program, typing the info over and over when you are testing becomes tedious. To simplify things, you can put all of your answers in file and send the file to <STDIN> using the redirection operator.

Another way to send data to a Perl program is by way of a Unix pipe. A pipe connects two or more programs so that the output from one program becomes the input for another (the data flows from one program to another through a 'pipe'). If we have two programs, program_1 and program_2, and we want the output of program_1 to become the input for program_2, we would type this on the Unix command line

$>program_1 | program_2

The vertical bar, |, is the 'pipe' between these two programs.

Now to feed a text file to a Perl program's <STDIN>, we could do this

$>cat listOfNames.txt | readNames.pl

cat is a Unix program that streams the contents of listOfNames.txt to the screen. However, since there is a pipe, the output is captured by the pipe and sent to readNames.pl.

4.3 Reading from <>, the diamond operator

Reading from <STDIN> is so common, the creators of Perl decided to make STDIN optional; you can just put <> instead. The creators of Perl also decided to make assigning <> to a variable optional too. If you don't assign to a scalar, the input is automatically assigned to the special variable $_.

A very common way to use <> is in a while loop, where we can keep reading lines of input until there is no more

@data = ();

while(<>)

$_ assigned <STDIN>

{

chomp;

chomps $_

print;

prints out $_

...

more statements

...

push (@data, $_);

}

Using a while loop to read in data is a very common thing to do. You'll notice that we are pushing each line into @data and may be wondering why we just didn't use a single line @data = <STDIN>? We could have but by using a while loop, we can do something which each line before we store it in the array.

One example where this might be important is if in the case where you have to search through an enormous amount of data but you only want to keep a small piece of it, say like going through a phone book of names and only keeping the names of people that have the same surname as you. If you tried storing all of the names in the phone book in @data, then searching @data for your surname, you may find that @data is too big to fit in your computer's memory.

Another thing you may have noticed is that I've used chomp instead of chop. What's the difference? The principle difference is that chomp only removes the last character if that character is a newline, \n. If all you want is to remove the trailing newline characters from each line of input, chomp is safer than chop since chop will remove the trailing character no matter what it is.

<> has a very useful property if you have multiple files to read. If you put a list of file names after your program name, <> will read data from all of them.

$>readNames.pl names_1.txt names_2.txt names_3.txt

If readNames.pl uses the <>, <> will read the contents of names_1.txt, names_2.txt, and names_3.txt in that order. Note that this property doesn't work if you use <STDIN> instead of <>, nor does it work this way if you use a pipe or redirection operator on the command line.

So what is <> doing here? How does it know what files are listed on the command line? What <> is doing is that it's getting the filenames from @ARGV which contains ("names_1.txt", "names_2.txt", "names_3.txt"). See Lecture 2 for refresher on @ARGV. In fact you could change the contents of @ARGV in a statement before the <> appears and have your program read a different set of files*.

* If you want to assign which file(s) are being read in from within your Perl code, you wouldn't normally do it by changing @ARGV. The proper way is to use open() which is described later in this lecture.

4.4 Output to STDOUT and saving output to a file

Anything that goes to standard out will just go to the terminal screen. When you invoke print statements in Perl, the print command sends it's output to standard out by default. If you want to save the output to a file, just use the > redirection operator (notice the direction it's pointing) pointing to the name of the file you want to save it to

$> someProgram.pl > myOutput.txt

This redirection operator takes the output of someProgram.pl, creates a file called myOutput.txt, and puts the output into that file. If myOutput.txt already exists, some Unix shells will replace the contents with the output of someProgram.pl, while other shells may give an error message and quit without running someProgram.pl.

If myOutput.txt already exists and you want append the new output to the end of that file, you would use the shell's concatenation operator, >>.

$> someProgram.pl > myOutput.txt

$> someOtherProgram.pl >> myOutput.txt
4.5 open() and close()

If your program has more than trivial functionality, likely you are going to read from and write to more than just one or two files. Using the shell redirection and pipe operators do not work well with more than a couple of files. Furthermore, the files that you will use for input and output may not be known until after the program is already running (e.g. your program may ask the user for a file to save data to). What you need are Perl's open() and close() operators. Using these operators is easy but before I show you how to use them, we must take a detour and talk about filehandles.

A filehandle is to a computer file on disk as a variable is to data in RAM. A filehandle is just a name of an I/O connection that is giving data to your Perl program, or accepting the output from your Perl program. STDIN is a filehandle that names the standard input I/O connection to the Unix shell. Likewise, STDOUT is a filehandle that names the standard output I/O connection.

In Perl, you name a filehandle with standard alphanumeric characters (underscores are allowed too) like other Perl variables but you don't prefix the name with any special characters like $ or @. By convention, almost all Perl programmers name their filehandles with all uppercase letters.

open()

The open operator will establish a connection with a file that you can read from or write to. To use the open operator, you need to specify three things: a filehandle, a redirection operator to tell Perl that you are reading or writing to the file, and the file name. Here is an example of how to open a file you are going to read from

open(IN, "<input.txt");

Let's decompose this statement. open takes two arguments. The first argument, FH, is the filehandle. You can pick any name. If I only have one file to read from, I usually call the handle FH, for [f]ile[h]andle, or IN, for [in]put. The second argument has left pointing redirection operator, <, followed by the name of the file. When the redirection operator points left, it means that file is being read (think of the data flowing from the file to the filehandle and the redirection operator is pointing in the direction that this data is flowing).

To open a file to write to, just reverse the direction of the redirection operator

open(OUT, ">output.txt");

The right pointing redirection operator shows that data is flowing from the OUT filehandle into the file output.txt. Remember, the filehandle can have any name you want. I used OUT because it tells you immediately what the filehandle if for; I won't make the mistake of trying to read data from an OUT filehandle nor will I try to write to an IN filehandle.

In the example above, if output.txt doesn't exist, Perl will create it for you when the open statement is executed. Actually, if the file already exists, it will be erased and a new empty one will be created, so be careful! If you want to connect to an existing file and have your output appended to it, use '>>' instead of '>'.

Each filehandle can only be associated with one file while it is in use. If you want to have several files open at the same time, each call to open must be given a unique filehandle.

close()

When you are done with a file, you should close the connection by calling close. close just takes one argument, the filehandle associated with the file you are closing.

close(IN);

close(OUT);

If you have opened some files, and your Perl program exits without the files being closed with a call to close, Perl will close them for you automatically. However, if your program crashes or exits abnormally, there is a chance the file(s) may become corrupted so always call close as soon as you are done with them. Once you have called close on a filehandle, you may use that filehandle with another call to open.

4.6 Reading from a filehandle

We've shown you how to open a file but what do you do with the filehandle? We'll if you've open a file to read from, you can put the filehandle in a diamond operator and read from it. You use just in the same way you used <STDIN>.

#

Read from 'input.txt', one line at a time

#

open(IN, "<input.txt");

while($oneLine = <IN>) {

chomp($oneLine);

...

some statements

...

}

4.7 Writing to a filehandle

The easiest way to write data to a file is to use a print statement with the filehandle appearing immediately after print

open(OUT, ">myData.txt");

print OUT $someData;

print OUT $moreData;

Note that there is no comma after the filehandle in the print statement, just a space.

If you leave out a filehandle in the print statement, print uses STDIN by default

#

These two statements are equivalent

#

print "Some text";

print STDIN "Some text";

4.8 A brief diversion: 'die'

When you are writing a program that can possibly do something dangerous, such as corrupt data critical to your job or erase important files, you may want your program to immediately stop before it can do any damage. The way to make an emergence exit out of your program is to use the die operator. When Perl encounters a die statement, it stops and can print a useful error message telling you why your program died and which die statement was executed (useful if you have several in your code).

The way to use die is like this. Let's say you are on a team of programmers that has written a program that controls a laser that is used in eye surgery. In this program you have written a piece of code that takes data from another section of code that you didn't write, and uses that data to move the laser beam a few millimeters at a time. Since you are such a careful programmer, you know your code is bug-free. However, since you didn't write the other code that is giving your part the data and you know that the other programmers drink heavily while at work, you are worried that the data your code receives might be bad and could end up blinding the patient. So what you do is write your code to check that data and die (shutdown everything) if it's bad.

#

Move the laser to cut the cornea.

Each element in @laserInstructions is a move

command (e.g. left 1mm, up 3mm, etc.)

#

$laserInstructions is set in line 1076, written

by Homer J. Simpson.

#

@laserInstructions must contain at least one

command. If no move is intended, that single

element will contain the 'pause' command.

If there are no commands there must be

a bug in the code. In that case, shutdown the

program.

#

if(@laserInstructions > 0)

{

...

code to move the laser

...

}

else

{

die "D’oh, no laser instructions: $!";

}

If @laserInstructions is a zero length array, the die statment will be run, killing to program. In the process of dying, Perl will print out the string that follows the die keyword. You can put anything you want in the string, or nothing at all; usually you put something that will tell why the program died. In the above example, the string ends with $!. $! is a special Perl variable, like $_, except it contains information about why the code died and where in the code it was called. This information can be very useful when debugging your code.

4.9 logical && (and) and || (or)

In Lecture 3 we talked about conditional expression used in if statements, among others. We used simple tests, such as testing to see if a variable is bigger or smaller than a number or testing if a variable is equal to a string. However, there are many times when you have to test several conditions before you can decide if a code block should be run. If all of your tests need to be true before a code block is run, you can use &&'s (and's)

See if this person can get a home loan.

They can if they meet all of these conditions:

1) Make at least $100k/year.

2) Have at least $50k down payment.

3) Have a credit score more than 500 points.

#

if($income >= 100000 && $down >= 50000 && $credit >

500)

{

...

code to process loan

...

}

The if is true, i.e. the code block will run, if all three of the tests are simultaneously true. The way you would read this test is 'if $income is greater than or equal to 100,000 AND if $down is greater than or equal to 50000 AND if $credit is greater than 500, then process the loan'. If any of these three tests is not true, the entire condition is false and the loan is not processed.

Now if you were a loan agent that is more forgiving, you might only require that your client pass one of the tests: ''if $income is greater than or equal to 100,000 OR if $down is greater than or equal to 50000 OR if $credit is greater than 500, then process the loan'. The symbol for 'or' is ||
if($income >= 100000 || $down >= 50000 || $credit >

500)

{

....

code to process loan

...

{

If one or more of the tests are true, the whole conditional expression is true and the code block is run. When using ||, the order that you put your tests can be important (and later in this lecture we will see a case where it is). When Perl runs each test, it picks the left most first and works it's way to the right. Income will be tested first, then the down payment, and lastly the credit score. Since only one test has to be true, as soon as Perl finds one to be true, it skips the remainder and immediately jumps into the code block. For example, if the income test is passed, Perl will never look at $down nor $credit.

You can combine && and || in various ways by using parentheses. The tests in parentheses are evaluated first. In this example the client will get a loan if they have at least a $100,000 income OR if they have at least $50,000 for the down payment, AND if they have a credit score greater than 500.

if(($income >=100000 || $down >= 50000) && $credit >

500)

{

...

code to process loan

...

}

The loan would be process in the following example conditions

· $income = $200,000, $credit = 600

· $down = $75,000, $credit = 510

· $income = $200,000, $down = $75,000, $credit = 700

The loan would not be process in the following example conditions

· $income = $200,000, $credit = 425

· $down = $75,000, $credit = 380

· $income = $200,000, $down = $75,000, $credit = 500

4.10 Using || by itself

An 'or' doesn't only have to be used in an if (or a while, until, unless, etc.); it can be used by itself to control the execution of Perl statments. Let's say we have two generic Perl operators, Op1 and Op2, that do some work on a string and return a number or string. Furthermore, let's say that Op1 and Op2 return '0' when the operation they were doing (or attempting to do) failed.

Now in Perl, you can write a statement like this

Op1($string) || Op2($string);

What does this do? Well, if you recall our discussion of how || works in an if statement, tests are performed left to right. But the tests don't have to be the usual comparisons, i.e. >, <, <=, >=, ==, etc., they can also be operators that return some value that can be interpreted as true or false.

So when Perl reaches the statement that contains a ||, it says 'I have a couple of tests to run and I need to see if at least one of them is true'. So it runs Op1($string) first and looks at the return value. If the return value is true, it doesn't need to run Op2($string), and it won't, and will continue execution on the next line. If Op1($string) returns a false value, Op2($string) is run to see if it is true. Logically, this is equivalent to

if(Op1($string)) {

do nothing in this block

}else{

Op2($string);

}

Note that whether or not the entire statement, Op1($string) || Op2($string), is true or false is not the issue. What we are doing is using || to only execute Op2($string) if Op1($string) is false. In the next section we'll see why this syntax if useful.

4.11 Using open() safely

When you are using open, it is wise to check to see if the open operator worked, especially if the open is being used to open a file to save important data. Some reasons why open might fail is that you have a bad file name, a bad path, you don't have read permission of a file you are trying to read, you can't write to a file because you don't have write permissions, etc. You wouldn't want to write a nifty checkbook program, spend hours entering your transactions, and find out none of your work was saved.

If open fails it returns "" (an undef) so you can use it in an if statement like this

if(open(OUT,">./data/myData.txt"))

{

...

do some work and save data to myData.txt

...

close(OUT);

}

else

{

kill the program if we can't save data

die "Can't open myData.txt to save data: $!";

}

If the open operator fails, the die statement is immediately called.

A more common and compact syntax to check your open success is to use an ||
open(OUT, ">./data/myData.txt") ||

die "Can't open myData.txt to save data: $!";

This syntax is so popular you'll see it as the preferred method to check your open operations in just about every Perl book out there. I urge to use it all the time when opening files.

4.12 Exercises

Exercises 1:

Write a program that has the following features:

The program asks you if you want to read data or write data.

If you type in 'READ', it asks for a file name to open. If the file exists, it reads it in and prints the contents to the screen. If the file can't be opened, the program should die.

If you type in 'WRITE', it asks for a file name to write to. If a new writeable file can be opened, prompt the user to type in a series of strings and write these strings to the file, one string per line. If a new writeable file can't be opened, the program should die.

A sample session might look like this:

$>exersize4_12.pl

Do you want to READ or WRITE a file? WRITE

What is the name of the output file? sampleData.txt

Enter a string, type QUIT if you are done: One

Enter a string, type QUIT if you are done: Two

Enter a string, type QUIT if you are done: Three

Enter a string, type QUIT if you are done: QUIT

Finished entering data. Data written to "sampleData.txt".

$>exercise4_12.pl

Do you want to READ or WRITE a file? READ

What is the name of the input file? sampleData.txt

This file contains:

One

Two

Three

Exercise 2:

You are an avid crossword puzzle player and would like to develop at software tool that will help you solve some really difficult puzzles. The tool is very simple: If you have an unknown word that you need help with, you give the tool the letters you have already guessed and the number of spaces available for the word. At your disposal you have an electronic dictionary*.

While working on you crossword solver, you find that the program will work best if the dictionary is sorted by word length. For example, all words that are 8 characters long should be grouped together.

Your task for this assignment is to create a program that will read in the dictionary, sort the words by length, and write all words of the same length to a file, i.e. all words 8 characters long will be put into one file, all words 9 characters long will be put into another file, etc. The words in a given file do not need to be sorted. Use the length operator on the word to get it's length. Don't worry about punctuation marks like apostrophes and period; just count them the same as letters. We'll learn how to handle those later.

Some hints:

1. Break down the problem into little tasks and write the code for that part. Check to make sure that that part works before you move on.

2. Before you start writing data to files, have it print out to the screen. This will make it easier to see if your code is manipulating/sorting the words correctly.

3. Make a small test dictionary with a few words a various sizes. A smaller dictionary means you can print everything out to the screen and inspect all of it. The full dictionary is about 100K words.

4. Don't assume you know the maximum word length a priori (before you program runs). Write code in your program to figure this out. This will tell you how many files you have to create.

5. Have your program construct the output file names at run time. You have to do this because you don't know ahead of time how many files will be created. Use variables for the output file names. It would be a good idea to use the word length as part of the file name.

6. If you have trouble solving this problem for all word sizes, try writing the program so that it only works on specific words size. Solving this partial problem will help you to conceptualize how to solve the rest of it.

* Our class Linux server has a spellchecker program, Aspell. You can dump it's dictionary to a file called dictionary.txt this way

$>aspell --dump master > dictionary.txt

Page 12 of 12

