CSCI44A Programming Perl I

Lecture 2

8/26/2002

3 Control Structures

3.1 Statement Blocks

A statement block is a sequence of statements, enclosed by matching curly braces

{

chop($a);

$b = "Variable \$a has a value of ", $a, ".\n";

print $b;

}

The braces can also be on the same line

{ print $b; }

And can also be empty

{ }

3.2 if statement

An if statement tells Perl to execute the statements in a code block if a condition is true. If the condition is false, the statements in the code block are not executed. Schematically an if statement looks like this

if (conditional expression)

{

statement 1;

statement 2;

}

In the above example, if the conditional expression is true, statements 1 and 2 are executed. Notice that although there are semi-colons after statements 1 and 2, there is no semi-colon after the conditional in the parentheses. Here is an example from my early college days written with Perl

if($age < 21)

{

print "You are not allowed to buy beer here!\n";

}

if($age >= 21)

{

print "How many kegs do you want?\n";

}

Here, if $age is less than 21, that condition is true, and so the first code block (no beer for you!) will be executed. And since $age is not greater than or equal to 21, the second code block is skipped.

3.3 code blocks and coding style

Before we continue with more complicated if statements, lets talk a little about coding style. In the previous examples, we put the beginning brace on a new line after the if condition

if(conditional expression)

{

statement1;

statement2;

}

Many people write their code this way, putting the beginning brace on the same line as the if

if(conditional expression) {

statement1;

statement2;

}

There is no difference as far as Perl is concern.

If there is only one statement in the code block, you can put the braces on the same line to save space. Some times this also makes the code more readable.

if(conditional expression) { statement; }

3.4 coding style part 2, the if modifier

Perl allows for a variation of the if syntax where the if condition appears at the end of a single statement. The syntax is

statement_1 if (conditional expression);

statement_1 is executed if the conditional expression is true. Note that the if modifier can only work on one statement; you can't use a code block. Additionally, the parentheses are optional and are frequently omitted.

These two statements are the same

#

print "You answered no." if ($answer eq 'no');

print "You answered no." if $answer eq 'no';

This would give an error message.

No braces allowed.

#

{ print "You answered no."; }if $answer eq 'no';

3.5 What is true? What is false?

In Perl there is no native boolean type so we should define exactly what is true and false. The rules are summarized thusly

1. A string that is empty (i.e. "") evaluates to false.

2. A string that contains one zero (i.e. "0") evaluates to false.

3. Numbers are converted to strings for the purpose of evaluation by rules 1 & 2.

4. Any string that is not false by rules 1 and 2 is evaluated to true.

In rule 2, the false condition is only satisfied by one and only one zero, "00" and "0.0" evaluate to true.

Here are a few examples to make things concrete

all of these would evaluate to false

$a;
$a not assigned yet, it's undef so

defaults to an empty string

$a = "";

empty string, so false

$a = 0;

converts to "0", so false

$a = 5 – 5;
evaluates to 0, converts to "0",

so false

all of these would evaluate to true

$a = " ";

string contains a space, true

$a = 1;

not a "" or "0", so true

$a = "true";
true

$a = "false";
it's not an empty string, so true

3.6 if/else statement

When you create an if block, usually what you have in mind is to execute a collection of statements if the condition is true, and if the condition is not true, execute a different collection of statements. You may have seen this before in another computer language as an if-then-else or if-else. In Perl, it's just if-else

if(conditional expression) {

true_statement_1;

true_statement_2;

} else {

false_statement_1;

false_statement_2;

}

In Section 3.2, we simulated an if-else statement by using two if statements in a row. Using an if-else statement, it would look like this

if($age < 21) {

print " You are not allowed to buy beer here!\n ";

} else {

print " How many kegs do you want?\n ";

}

3.7 if-elsif-else statement

If you have multiple possible conditions to test for, you can chain your if statements with the if-elsif-else construct. Notice the elsif is spelled without the second 'e' (elsif and not elseif)

if(conditional expression one) {

...

block_one;

...

} elsif(conditional expression two) {

...

block_two;

...

} elsif(conditional expression three) {

...

block_three;

...

} else {

...

last_if_fails_block;

...

}

If the first condition is true, block one is executed. If the second condition is true, block two is executed. And so on. The else block is executed if none of the if conditions are true. Note that as soon as one code block is executed, Perl continues outside of the if-elsif-else; it is impossible to run more than one code block. Lastly, the else statement is optional.

Here's an example of if-elsif-else in action

$day = <STDIN>;

if($day eq 'Monday') {

print "Go to school.\n";

} elsif ($day eq 'Tuesday') {

print "Go to school.\n";

} elsif ($day eq 'Wednesday') {

print "Go to school.\n";

} elsif ($day eq 'Thursday') {

print "Go to school.\n";

} elsif ($day eq 'Friday') {

print "Go to school.\n";

} elsif ($day eq 'Saturday') {

print "Goof off today!\n";

} elsif ($day eq 'Sunday') {

print "Do your home work. Dang!\n";

} else {

print "Not a valid day!\n";

}

For the advance user, you may recognize that this construct is similar to the switch statement in C and you probably skipped ahead to see the syntax for Perl's switch statement. Don't bother. Amazingly, Perl doesn't have a switch construct so you'll have to resort to if-elsif-else to simulate it.

3.8 while/until statement

Often you will want to repeatedly execute the statements in a code block until some condition is satisfied. A while statement will let you do just that

while (conditional expression) {

...

statement;

...

}

In the above schematic, the statements in the block will be run over and over until the condition in the while test is false. If the test is false the first time around, the code block is never run.

Here's an example that will read lines from STDIN, store them into an array, and stop when the string 'STOP' is encountered

Read strings from STDIN and keep reading until

we encounter the string 'STOP' all by itself.

#

@data = ();

$continue = "yes";

while ($continue eq "yes") {

chop($string = <STDIN>);

if($string eq 'STOP') {

$continue = "no";

} else {

push(@data, $string);

}

}

until is similar to while except that the code block is repeatedly run until the condition is true. Here's an example for gamblers

A gambling game.

Keep playing until you win.

The odds of winning are 1:1,000,000.

Generate a number between 0 and 1,000,000.

If the number is less than or equal to 1, you win

and can quit. Otherwise you play again.

#

$iWonTheJackpot = "no";

until ($iWonTheJackpot eq "yes") {

print "Press enter to try your luck.\n";

<STDIN>;

$thisTry = rand (1000000);

if($thisTry <= 1.0) {

$iWonTheJackpot = "yes";

print "Go home with your millons!\n";

} else {

print "You lose. Try again.\n";

}

}

3.9
for statement

We covered this in Lecture 2, Section 2.6.

3.10 foreach statement

foreach is a construct that lets you loop through each element in a list or array without explicitly having to use indices (as you would have to do if you used a for statement). This is best illustrated with an example. With a for statement, you would access each element like this

@myCourses = (
"Perl I",

"Perl II",

"General Chemistry",

"Organic Chemistry"

);

for($i=0; $i<@myCourses, $i++) {

print "I teach $myCourses[$i].\n";

}

And with a foreach

@myCourses = (
"Perl I",

"Perl II",

"General Chemistry",

"Organic Chemistry"

);

foreach $class (@myCourses) {

print "I teach $class.\n";

}

With both examples, the output is

I teach Perl I.

I teach Perl II.

I teach General Chemistry.

I teach Organic Chemistry.

In the foreach example, Perl takes each array element of @myCourses one at a time, assigns the array element value to the variable $class, and runs the statements in the code block.

You can also use a foreach on a literal list

Prints out 1 through 5

foreach $number (1, 2, 3, 4, 5) {

print "$number\n";

}

In fact, when Perl is given an array in a foreach statement, it expands it out into a literal list.

Earlier, we briefly covered the special variable $_. foreach uses it as the default scalar variable containing each array element if we don't define a variable after the foreach keyword

foreach (@myCourses)

{

$_ contains each array element

print "I teach $_.\n";

}

The remainder of this section is a little advance so you can skip it for know if it doesn't make much sense.

Now you maybe thinking, "foreach is a convenient way to get all of the elements from an array, but what if I want to change them? Do I have to go back and use a for statement?" The answer is no. When foreach assigns the value of an array element to a scalar variable, for example when the variable $class was given the string "Perl I", $class doesn't really contain that string but rather it contains a reference to the array element that contains that string. That means if you change the value of $class, the new value will be put into the original array. Here's an example to demonstrate

@a = (1, 2, 3);

foreach $number (@a) {

$number = $number * $number;

}

@a is now (1, 4, 9)

This method of modifying array elements appears to be rare in practice – I never use it and can't recall seeing it in other people's code – so you probably don't want to take advantage of this feature. There are two probable reasons why this specific use of foreach is not popular. First, foreach is usually thought of as a way of reading off the elements of a list without changing them, and second, advance Perl programmers use the more compact map function when they want to modify the elements of an array and don't need to worry about the indices. We will cover map in a later lecture.

3.11 Exercises

1. Write a number guessing game where you pick a number between 1 and 10, inclusive, and the computer tries to guess your number. The computer is given 5 tries to guess your number. A sample session should look something like this

$> numberGame.pl

Pick a number between 1 and 10 and I'll guess it. Press ENTER when ready.

Is your number 3?

No

Is your number 7?

No

Is your number 1?

No

Is your number 4?

No

Is your number 6?

No

Darn! I lose. Do you want to play again?

Yes

Pick a number between....

Your program will need to generate random integers to make its guess. Since we haven't covered rand() in the lectures here's how you can get a random integer between 0 and 9, inclusive

$randNumber = int(rand(10));

rand(10) will generate random numbers between 0.000000000000000 and 9.999999999999999. int() returns the integer portion of a number given to it.

The program should keep playing until you quit so you'll need to use a while or until loop. Your program should keep track of its guesses so that it doesn't guess the same number twice in the same game (hint: use an array to keep track of the guesses your program makes).

Page 9 of 9

