CSCI44A Programming Perl I

Lecture 2

8/26/2002

2 Special Variables (Supplement to Lecture 2)

In the last lecture, I showed the perldoc documentation for the chop() operator which contained a code snippet that looked like this

while(<>) {

chop;

print;

...

}

One of the students asked, "Where are the variables?" Well, they are there but they're hidden. In these notes, I'll explain where they are and how you can use them.

* The above code uses the standard while construct. If you are not familiar with while, skip ahead to Lecture 3 then come back here before going on to Lecture 4.

2.1 The diamond operator, <>

In a previous lecture, I showed you that you could read a string from the screen or a file by using <STDIN>. The two arrow brackets used this way are known as the diamond operator (put them together and it is shaped like a diamond). When we put STDIN between the brackets, it means we are reading from standard input.

Since more often than not, we will be reading input from standard input, the Perl creators have set the empty diamond operator to default to standard input (i.e. <> is the same as <STDIN>).

2.2 $_

Perl has a number of special variables that for the most part remain hidden. Most of these special variables have punctuation symbols for names (instead of the usual numbers and letters). They usually have some default setting set by Perl and you never need to change them or even look at them. However, a few are very useful and you'll want to know about them even if you don't use them.

The most common is the $_ (dollar sign underscore) variable. Many of Perl's operators are written so that if it takes a scalar and you don't give it one, it will use $_. And if the operator returns a scalar, and you don't give it a variable to assign the return value to, it assigns that return value to $_.

Let's decompose the above code snippet line by line to see how $_ is used.

while (<>) {

The <> is reading a line from STDIN. In Lecture 1 we were taught to assign <STDIN> to a scalar variable (e.g. $str = <STDIN>). Since we have not explicitly assigned <> to a variable, the assignment is made to $_, that is, $_ contains whatever string was read. This is equivalent to while ($_ = <>) {.

chop;

chop takes a scalar variable. Since we didn't give it one, it will chop whatever string is in $_. This is equivalent to chop($_).

print;

print takes a string and prints it out. Since we didn't give it one, it will print whatever string is in $_. This is equivalent to print $_.

If you don't know how to use $_ with a particular Perl operator, look at the perldoc for that operator to get instructions and examples.

2.3 @ARGV

Perl has a special array variable for command line argurments, @ARGV. When you start a Perl program, any strings put on the same line as the program name, and after the program name, are stored in @ARGV. Here's a piece of code to demonstrate

#!/usr/bin/perl –w

#

@ARGV example

#

for($i = 0; $i < @ARGV; $i++) {

print "$ARGV[$i]\n";

}

exit;

$>argvExample.pl first_arg second_arg third_arg

first_arg

second_arg

third_arg

Page 1 of 2

