CSCI44A Programming Perl I

Lecture 2

8/26/2002

2 Lists and Arrays

2.1 What is a list or array literal?

A list is just a collection of comma-separated scalars enclosed in parentheses. For example:

(1, 2, 3)

list of three numbers

("one", "two", "three")
list of three strings

A list can contain a mixture of numbers and strings

("one", 2, 3)

and scalar variables

($a, $b, $c)

An empty list is just the parentheses with nothing in between

()

2.2 List construction operator

If the list only contains numbers, you can use the "list construction operator", .. (two periods), to fill in consecutive values without having to explicitly list them. Each number is 1 added to the previous number.

(1..5)

same as (1, 2, 3, 4, 5)

(1.2..5.2)
same as (1.2, 2.2, 3.2, 4.2, 5.2)

(1..5, 7, 9..12)

 # same as (1, 2, 3, 4, 5, 7, 9, 10, 11, 12)

You can also use variables

$a = 2;

$b = 5;

($a..$b)

same as (2, 3, 4, 5)

The list construction operator only works with ascending values

(1..5)

same as (1, 2, 3, 4, 5)

(5..1)

nothing

If the upper bound of the list is not a whole number of steps above the lower bound, the list will only include the values that fall within the bounds

(1.3..6.1)
same as (1.3, 2.3, 3.3, 4.3, 5.3)

2.3 print and lists

If you give print a list as an argument, it will print out all the elements without spaces.

print (1, 2, 3);

prints out 123

If you want spaces, they must be put into the list explicitly

print (1, " ", 2, " ", 3);

prints out 1 2 3

$a = 3.3;

print ("The answer is ", $a, "!\n";);

prints 'The answer is 3.3!'

2.4 Array variables

Array variables are preceded with an at sign, @. You can assign the values of an array with a list

@nothing = ();

empty array

@lastNames = ("Smith", "Jones", "Doe");

@numbers = (1, 2, 3);

You can use the same variable name for both scalars and arrays simultaneously

$day = "Tuesday";

@day = ("Saturday", "Sunday");

You can also assign values to an array with another array

@a = (1, 2, 3);

@b = @a;

@b is (1, 2, 3)

And you can also assign arrays with a list of arrays

@a = (1, 2, 3);

@b = (10, 11, 12);

@c = (@a, @b);

@c is (1, 2, 3, 10, 11, 12)

2.5 Element Access

Accessing one element of an array is similar to C. Just prefix the array name with a '$' and follow the name with the index number in brackets, []. Just like C, the first element has an index of '0'.

@a = (1, 2, 3);

$var = $a[0];

$var is 1

$var = $a[2];

$var is 3

The reason the array name is prefixed with a '$' sign is because we are accessing one element, or a scalar. Note that @var, $var, and $var[0] are completely different things and hold different data.

Now here's something a little more advanced but very convenient. If you use negative indices, Perl will give you the array elements relative to the end of the array. Here is a simple example to demonstrate

@a = (1, 2, 3);

$var = $a[-1];

$var is 3

$var = $a[-2];

$var is 2

$var = $a[-3];

$var is 1

You will probably find the –1 index the most useful because it will give you the last element without you having to figure out how long is the array.

2.6 for loop construct

If you've done any coding in C, C++, or Java (among others), then the Perl for loop is going to seem quite familiar. Here's a for loop in action with a Perl array

@a = ("one", "two", "three", "four");

for($i = 0; $i < 4; $i++) {

 print "Array element ",$i," contains ",$a[$i],".\n";

}

and the output

Array element 0 contains one.

Array element 1 contains two.

Array element 2 contains three.

Array element 3 contains four.

If you've never seen a for loop before, here's a brief explanation of how it works. A for loop will repeatedly execute the statements between the braces, {...}. The code between the braces is know as the body of the for loop or code block. The number of times the statements are run is determined the arguments between the parentheses that appear after the for keyword. The first argument is the loop initializer. In the above example, $i = 0 as we begin the loop.

The second argument is the test condition. The for loop will continue looping as long as the test condition is not false. In the above example, the test condition is true as long as $i is less than 4 each time it repeats the loop. As soon as $i == 4 or $i > 4, the test condition is false, looping stops and code execution continues after the closing brace.

The third argument is an increment expression. Each time the loop is executed after the first time, the increment expression is executed after the last statement before the closing brace is run. In this case, each time through loop, $i is incremented by 1.

Note that like C, the statements in the parentheses are separated by semi-colons. Also like C, you can use compound statements like this

for($i=0, $j=0; $i < 10; $i++, $j*=2) { }

and you can also leave the fields blank to get an infinite loop

for(;;) {....infinite loop....}

2.7 Array Size

Looping through an array is easy, but how do you know when to stop? Or rather, how do you know the size of the array or what is the index of the last element?

In Perl, getting the size of the array is easy. All you do is assign the array to a scalar like so

$arraySize = @array;

Now $arraySize equals the number of elements in @array. Sometimes you want the length of an array but you don't necessarily want to assign it to a variable. To get the length in this situation, use the scalar() function

print @array;

prints out all of the

values in @array

print scalar(@array);
prints out the length

of @array

If you want the index of the last element, Perl has a special way of doing that too; you use '$#' in front of the array name

$lastIndex = $#array;
$array[$lastIndex] is

the last element

Remember, because array indices start at 0 and not one, the following is true for a non-zero length array

$#array + 1 == scalar(@array)

2.8 Array allocation (and deallocation)

In C, using arrays can be hard to code; if you use them incorrectly, you can crash your computer. If you know the maximum length of the array before you compile your code, you can declare a static array of fixed length. However, if the array needs to be able to grow, then you get into the difficulty of calling malloc() or realloc(). There are C++ and Java classes that make dynamics arrays easier and safer to manipulate but you need write a fair bit of code to manage the whole process.

Creating and changing the size of an array in Perl is very, very easy. If you have an array initialized to a specific length and you want to added elements, just start using them and Perl will reallocate memory for the array in the background.

@a = (0, 1, 2, 3, 4);
Perl creates an array,

@a, 5 elements long

$a[5] = 5;

Perl reallocates @a to be

6 elements long and the

first five elements are

untouched

If in the above example, if you had put $a[99] = 5;, Perl would have reallocated @a to be 100 elements long, with elements $a[5] through $a[98] uninitialized.

This last point is very important. Perl assumes you know what you are doing and that if you had put $a[99] = 5, you probably are going to assign values to the other array elements later. Because Perl lets you do this, you could put any number and Perl will try to use it. If you made a typo and put $a[100000000] – or a more likely occurance might be to put $a[$i] and $i becomes 100000000 due to a bug elsewhere in your code – Perl would try to allocate an array with 100 million elements. That's a huge array but Perl would try to increase the array to that size. In that case, you computer would probably run out of memory and crash without warning.

Perl also lets you shrink an array. The way you do it is with the $#array syntax. If you recall, $#array is defined as the index of the array's last element. But you can also assign a value to it. If the new value is smaller than the old value, the array will be shrunk and the discarded elements are returned to the memory heap available for use (i.e. they're gone). You can also increase the array be assigning a bigger value. And finally, you can get rid of all of the elements by assigning –1 to it. When you resize an array, the remaining elements will retain their old values.

@a = (1, 2, 3);
@a has three elements

$#a = 100;

@a has 101 elements

$#a = 500;

@a has 501 elements

$#a = 0;

@a has 1 element

(remember indicies start with 0)

$#a = -1;

@a has no elements

You can also get rid of all of the elements by assigning an empty list to the array.

@a = ();

same as $#a = -1

2.9 Array Slice

As we saw earlier, Perl makes is very easy to copy the elements of one array to another like this

@a = @b;
All the elements of @a are identical to @b

Perl also makes it very easy copy part of an array to another by using what is called an array slice or just slice

@a = ();

@b = (1, 2, 3, 4, 5, 6, 7);

@a = @b[0, 1];

@a is now (1, 2)

@a = @b[1, 2, 5];

@a is now (2, 3, 6)

To define a slice you put a @ (not an $) in front of the array name and put the list of array elements you want copied between the brackets. You can also use the .. operator

@a = @b[0 .. 5];

@a is (1, 2, 3, 4, 5, 6)

2.10 push() and pop () operators

push() and pop() will let you add or remove elements, respectively from the end of an array. Here are some example to demonstrate how these operators work

@a = (1, 2, 3, 4);

@b = (100, 101);

push(@a, 10);
@a is now (1, 2, 3, 4, 10)

push(@a, @b);

@a is now

(1, 2, 3, 4, 10, 100, 101)

$val = pop(@b);
@b is now (100), $val is 101

$val = pop(@b);
@b is now (), $val is 100

$val = pop(@b);
@b is still (), $val is undef

push() takes an array variable as it's first argument. The second argument can be a scalar, a list, or another array. pop() takes an array variable as it's argument; it's output is the scalar that was popped off the end of the array. If the array given to pop() is empty, pop() returns an undef (that's like a NULL in C).

If you have some programming experience you may notice that push() and pop() let us use a Perl array as a stack* without having to worry about keeping track of indices or requiring the use a stack class or library.

2.11 shift() and unshift() operators

shift() and unshift() are similar to push() and pop() except they operate on the beginning of an array instead of the end. Here are some examples to show them in action

@a = (1, 2, 3, 4);

@b = (100, 101);

unshift(@a, 10);

@a is now (10, 1, 2, 3, 4)

unshift(@a, @b);

@a is now

(100, 101, 10, 1, 2, 3, 4)

$val = shift(@b);

@b is now (101),

$val is 100

$val = shift(@b);

@b is now (), $val is 101

$val = shift(@b);

@b is still (),

$val is undef

2.12 reverse() operator

reverse() is a very convenient operator. It takes an array and outputs the elements in reverse order

@a = (1, 2, 3, 4);

@b = reverse(@a);
@b is (4, 3, 2, 1)

2.13 sort() operator

sort() is another extremely useful operator. It takes an array and outputs the elements in sorted order. The sorting, however, is not what you might expect as Perl defaults to sorting the string elements by ASCII order

@a = ("small", "medium", "large");

@b = sort(@a);
@b is

("large", "medium", "small")

@a = (1, 2, 3, 16, 32);

@b = sort(@a);
@b is (1, 16, 2, 3, 32)

If you are sorting words that are all lower case or all upper case, you will get alphabetical sorting. However, if you sort words with mixed case or numbers, you sorted array may look strange. Perl will let you modify sort() so that it can sort strictly alphabetically or numerically, however, that is a little advance so we will cover it later.

* Each alphanumeric character has a corresponding eight-bit code. This code is know as the American Standard Code for Information Interchange (ASCII). Often you will see these codes represented as base 10 numbers between 0 and 255. For example, 'A' is 65, 'B' is 66, 'a' is 97, '&' is 38, etc. With ASCII sorting, the sorting of strings occurs by comparing these numbers, character by character. Notice how the capital 'B' has a value of 66, where as the lower case 'a' has a value of 97. This means 'Boy' will come before 'aardvark' in a standard Perl sort.

2.14 chop() operator

We saw in Lecture 1 that we can use chop() to chop-off the last character in a string. We can also use it to chop off the character of every string in an array

@a = ("One\n", "Two\n", "Three");

chop(@a);
@a = ("One", "Two", "Thre")

2.15 <STDIN> as an Array

If you recall from Lecture 1, we used the <STDIN> operator to read a string or number from standard in (the command line) and assign that value to a scalar variable. We can also do the same thing to assign multiple input values to an array.

The sytax is like this

@a = <STDIN>;

Here's a simple program that demonstrates how it works

#!/usr/bin/perl –w

#

example2.10.pl

#

@a = <STDIN>;

chop(@a);
Why did I use chop()?

print "The output...\n";

for($i = 0; $i < @a; $i++) {

print "You entered $a[$i].\n";

}

Start the program and enter several strings followed by pressing the ENTER key after each string. When you are done entering strings, type ^D (type Ctrl & D keys simultaneously) and look at the output. Your session might look like this (<ENTER> means you pressed the ENTER key)

$> example2.10.pl

One<ENTER>

Two<ENTER>

Five<ENTER>

Three Sir!<ENTER>

<^D>

The output...

You entered One.

You entered Two.

You entered Five.

You entered Three Sir!.

If you'll look at the example, each array element is terminated by the <ENTER> key. This let's us enter in a string with spaces and have that string put into one array element. As long as I keep entering strings and hitting the ENTER key, Perl will keep accepting the strings until we are finished. The way you tell Perl that you're done is to type ^D. Also, as you are entering the strings and pressing ENTER, Perl also includes the ENTER as a '\n' on the end of your string; we use the chop() operator to get rid of it.

If you have to enter a large number of strings, the input can also be entered via a file. For example, if you had a file called input.txt and it contained these four strings, one on each line

One

Two

Five

Three Sir!

you could pass it to the example program like this

$>example2.10.pl < input.txt

and the output would be the same.

2.16 Exercises

1. Write a program that reads a list of strings and prints out the list in reverse order.

2. Write a program that reads a number and then a list of strings (all on separate lines), and then prints one of the lines from the list as selected by the number.

3. Write a program that reads a list of strings and then selects and prints a random string from the list. To select a random element of @somearray, put

srand;

at the beginning of your program (this initializes the random number generator), and then use

rand(@somearray);

where you need a random value between 0 and one less than the length of @somearray.

4. Write a program that will take two arrays

@a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

@b = ();

and assign the elements of @a to @b in reverse order (i.e. @b = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)). Write the code so that is uses a for loop to assign each element one by one. Additionally, only use non-negative indices.

5. Repeat (4) but now use negative indices.

6. Repeat (4) but now use the reverse() operator.

7. Repeat (4) but now use any combination of shift(), unshift(), pop(), and push(). It's ok if your code shrinks @a in the process.

Page 7 of 10

