CSCI44A Programming Perl I

Lecture 12

12/10/2002

14 Nested Data Structures

There are many kinds of nested data structures. The simplest kind to build is a list of lists (also called an array of arrays, or a multi-dimensional array). It's reasonably easy to understand, and almost everything that applies here will also be applicable to the fancier data structures.

14.1 Composition and Access

To illustrate how nested arrays work, let's look at two examples of how to initialize two 2-dimensional arrays. The first uses an array with elements that are array references.

assign to an array a list of list (LoL) references

@LoL =
(

["fred", "barney"],

["george", "jane", "elroy"],

["homer", "marge", "bart"],

);

@LoL is an array that contains three elements where each element is a reference to one of the anonymous arrays above. Therefore, $LoL[0] is a reference to the anonymous array that contains both "fred" and "barney". To get at one of the individual strings in this 2-D array, you need to use the -> operator to dereference the array reference. Study these examples to see how it works.

$LoL[0]->[0];
'fred'

$LoL[1]->[2];
'elroy'

$LoL[2]->[1];
'marge'

If this is a little opaque, let's try putting in some intermediate steps so you can see how to access 'marge'.

@LoL is an array containing a list of array references

$ar is an array reference to the last anon array in @LoL

my $ar = $LoL[2];

To get 'marge' out of $ar, we need to dereference it

my $homersWife = $ar->[1];

So

my $ar = $LoL[2];

$ar->[1];

is the same as

$LoL[2]->[1];

You can also initialize a 2-dimensional array with only anonymous arrays.

$arLoL =
[

["fred", "barney"],

["george", "jane", "elroy"],

["homer", "marge", "bart"],

];

$arLoL is an array reference pointing to an anonymous array, an anonymous array that itself contains references to three anonymous arrays. To get the reference of one of the inner arrays (the rows), you need to dereference $arLoL.

my $ar = $arLoL->[2];
ref to the last array ref or row
$ar->[1];

dereference $ar to get 'marge'

This is the same thing more succinctly

$arLoL->[2]->[1];

Notice how we have two -> operators in the last example. This is because we have to dereference twice since the array references are two levels deep. If we had constructed a 3-dimensional array, we can chain the dereferencing to access any desired element.

a list of lists of lists (LoLoL)

my $data = $arLoLoL->[3]->[6]->[1];

14.2 How Not to Construct a List of Lists

You cannot construct a list this way

@LoL =
(

("fred", "barney"),

("george", "jane", "elroy"),

("homer", "marge", "bart"),

);

where there are no references or anonymous arrays at all. The reason this fails is that Perl will aggregate each of the rows into one long list. If we tried the above code, it would be equivalent to

@LoL =
("fred", "barney", "george", "jane", "elroy",

"homer", "marge", "bart");

14.3 Eliminating excessive ->'s

Perl has a little trick that can make your code a little cleaner. If you have a series of array indicies, where the elements of the arrays are references, you can eliminate the -> between each [] and Perl will insert them in for you. For example, these two are equivalent

$LoL[2]->[1];

$LoL[2][1];

And these two are equivalent

$arLoL->[2]->[1];

$arLoL->[2][1];

Note that only the -> between []'s can be removed. These two examples will generate an error.

$arLoL[2]->[1];

$arLoL[2][1];

14.4 Constructing An Array of Arrays On The Fly

You can write your code so that your data structure is created by some input from a file, from the user, etc. Let's say that in the first example of Section 14.1, we wanted a 2-dimensional array containing cartoon character names, where the names are read from a file. The format of the file looks something like this

fred barney

george jane elroy

homer marge bart

ryouko tenchi sasami washuu

kaneda tetsuo masaru

....

This code can read in such a file and initialize a 2-dimensional array.

my @LoL = ();

while(<>) {

@tmp = split;

push @LoL, [@tmp];

}

The while loop is reading each line of the file. split is spliting $_ and creating a list of names. The [@tmp] creates an anonymous array containing the names from one line of input, and the push pushes the reference of the anonymous array into @LoL.

Another way to initialize a 2-dimensional array is to assign elements directly by specifying the indices. If you assign an array element that doesn't exist, Perl creates it for you (and all of the elements before it too if they don't already exist).

This code will create a 10 x 10 2-dimensional array and assign values to each element using the func() subroutine (func() is a subroutine of your choosing).

my ($x,$y);

my @LoL = ();

for $x (0 .. 9) {

for $y (0 .. 9) {

$LoL[$x][$y] = func($x, $y);

}

}

14.5 Hash of Hashes

Like an array of arrays, you can have a hash of hashes.

%HoH =
(

flintstones =>
{

lead => "fred",

pal => "barney",

}

jetsons =>
{

lead => "george",

wife => "jane",

son => "elroy",

}

simpsons =>
{

lead => "homer",

wife => "marge",

kid => "bart",

}

);

%HoH is a hash with three keys, flintstones, jetsons, and simpsons. Each key has a value that is a hash reference pointing to the anonymous hashes above. You need to dereference the hash reference to get a specific name.

Here's some examples of how you can access individual names.

$HoH{jetsons};

a hash reference

$HoH{jetsons}->{lead};
dereference the hash ref
to get 'george'

$HoH{jetsons}{lead};
'george' again

$HoH{simpsons}->{wife};
'marge'

$HoH{simpsons}{wife};
'marge' again

You can also construct the hash of hashes entirely with references.

hrHoH is a hash ref to a hash of hashes

%hrHoH =
{

flintstones =>
{

lead => "fred",

pal => "barney",

}

jetsons =>
{

lead => "george",

wife => "jane",

"his boy" => "elroy",

}

simpsons =>
{

lead => "homer",

wife => "marge",

kid => "bart",

}

};

Here's how you access individual names with this data structure.

$hrHoH;

a hash reference

$hrHoH->{jetsons};

a hash reference to the

'jetsons hash

$hrHoH->{jetsons}->{lead};
dereference the hash ref

#to get 'george'

$hrHoH->{jetsons}{lead};

'george' again

$hrHoH->{simpsons}->{wife};
'marge'

$hrHoH->{simpsons}{wife};
'marge' again

Constructing a HoH on the fly is pretty easy too. Let's say you had a file that had a format like this:

flintstones: lead=fred pal=barney

jetsons: lead=george wife=jane son=elroy

....

This code will let you read in the file and create the HoH.

while(<>) {

rm family name from $_

next unless s/^(.*?):\s*//;

$1 from (.*?) in regexp

my $family = $1;

split $_ into key/value pairs

for my $field (split) {

#split each key/value

my ($role,$name) = split /=/, $field;

$HoH{$family}{$role} = $name;

}

}

This certainly is not the only way to assign a HoH so I'll leave it to you to explore on your own. These two perldoc help files contain plenty of examples.

http://www.perldoc.com/perl5.005_03/pod/perllol.html

http://www.perldoc.com/perl5.005_03/pod/perldsc.html

Page 6 of 6

