CSCI44A Programming Perl I

Lecture 12

12/3/2002

13 Object Oriented Perl

13.1 A Basic Class

Here is a very simple class called Class1 saved to a file called Class1.pm:

package Class1;

sub new {

my $self = {};

bless($self);

return $self;

}

return 1;

A class is used to create objects, it serves as a template. This class only has one method called new. The new method is a special method known as a constructor. A constructor is used to create an object and to initialize things, like variables.

Now let's walk through the constructor line by line. The first line

my $self = {};

creates a hash reference with an anonymous hash (see the last section of this lecture for a discussion of anonymous hashes). This hash reference will be converted into an object reference that will point to the object being created. By convention, this reference is called self because it's a reference that an object uses to point to itself.

The second line is very important.

bless($self);

bless will take an ordinary hash reference and label the anonymous hash that the reference points to, as an object of class Class1. Without calling bless, the anonymous hash remains a hash. By calling bless, the anonymous hash becomes an object.

The last line

return $self

returns the object reference (remember, it used to be a hash reference but bless turned it into an object reference) to the code that instantiated (i.e. created) the object. Your main code needs this reference so it can manipulate the object.

To create an object of type Class1 in your main code you invoke the class's new() method like this.

use Class1;

my $object = Class1->new();

$object is a reference to the new object. That's all you need to do to create your first object!

Notice that when we called Class1's new method, we used the arrow operator, ->, instead of the double colon, :: like this Class1::new(). In this case, we could have created an object with Class::new(), however, when dealing with derived classes, the arrow operator will confer some advantages that we won't cover here. The point is to use the arrow operator when creating objects.

13.2 Methods

You can add methods to your class by simply adding subroutines to the file. Here I've added a method called printMessage() that will let a Class1 object print a message.

package Class1;

sub new {

my $self = {};

bless($self);

return $self;

}

sub printMessage {

print "Hello World!";

}

return 1;

You call an object's method by using the object reference, followed by the arrow operator, and ending with the method name.

use Class1;

my $object = Class1->new();

$object->printMessage(); # prints 'Hello World!'

exit;

13.3 Object Data

Because a Perl object is derived from a hash (re-read Section 13.1 if you forgot this point), you can use the hash to store an object's data. Many times you will want to assign an object's data when the object is first instantiated. The place to do this is in the constructor. Schematically, your constructor would look like this:

package Class1;

sub new {

my $self = {};

$self->{DATA_ITEM_1} = "0.05";

$self->{DATA_ITEM_2} = "1000";

bless $self;

return $self;

}

You can access the data in two ways. In the first method, you can access the data directly from your main program using the reference to the object.

Create an instance of Class1

my $obj = Class1->new();

Print out $obj's data

print $obj->{DATA_ITEM_1};

print $obj->{DATA_ITEM_2};

Accessing an object's data directly is considered to be a bad practice in object-oriented programming, however, because if you can access it, you might change it when you shouldn't. In fact, accessing an object's data directly is considered to be such a bad practice, it is forbidden (or nearly so) in many object-oriented languages (but not with Perl; Perl trusts you to do the right thing but lets you break the rules if you're a rebel). Restricting access to an object's data, or hiding an object's data, is known as data encapsulation.

So, if you aren't supposed to access and object's data directly, how do you get at the data? If the data is not supposed to be accessed, say the data is some temporary value that the object uses internally, you shouldn't try to access it all. However, if the data is something that you are supposed to have access to, either to get or set a value, the object should have defined method to facilitate this. This defined method is also known as an interface. Every class should have a well-defined interface, which should, among many things, should clearly tell you how to use specific methods to put in and get out data of an object.

Here's a contrived example of how you would write a bank savings account class where the account interest rate is accessed through methods.

package SavingsAccount;

sub new {

my $self = {};

$self->{INTEREST_RATE} = "0.05";

$self->{BALANCE} = "0.00";

bless $self;

return $self;

}

sub get_interest_rate {

my $self = shift;

return $self->{INTEREST_RATE};

}

sub set_interest_rate {

my $self = shift;

my $newRate = shift;

$self->{INTEREST_RATE} = $newRate;

return;

}

return 1;

Here's how you would use this class.

#!/usr/bin/perl -w

use SavingsAccount;

my $jonesAccount = SavingsAccount->new();

print out the saving account interest rate

my $intRate = $jonesAccount->get_interest_rate();

print "The Jones account interest rate is $intRate.";

change Jones' interest rate to a new value

$jonesAccount->set_interest_rate(0.06);

exit;

I'll assume you know understand how the get and set methods are called in the main code so we'll talk about the internals of these two methods. All object methods, like Perl subroutines that aren't in objects, have an argument list, where the arguments are stored in the implicit array @_. As before, these arguments can be accessed with the shift operator. Object methods have important distinction, however, in that @_ is never empty. Even if the method is not passed any arguments, @_ always contains one value as the first element. That value is the reference of the object that is calling the method.

In each method, the first element of @_, the object reference, is assigned to $self. It is called $self because $self is an object reference that points to itself. $self allows an object's method to dereference its own data. Without $self, an object can't access it's own data. Note that that an object's reference doesn't have to be included in the argument list when you call an object method. Perl puts it there for you by default.

Look at the get_interest_rate() method. In the first line we shift off the object reference from @_ and assign it.

my $self = shift;

Once we have $self, now we can access the object's interest rate which was initialized in the constructor and return it to the main code.

return $self->{INTEREST_RATE};

Now look at the set_interest_rate() method. When this method is called, we need to explicitly give it an argument, the new interest rate we which to assign to this savings account object.

$jonesAccount->set_interest_rate(0.06);

Within this method's code, we assign the arguments with two shifts.

my $self = shift;

my $newRate = shift;

Remember the first argument is always the object reference so we need to shift twice to get the new interest rate. Now that we have the new value, we can assign it to the object's hash.

$self->{INTEREST_RATE} = $newRate;

13.4 Object Data and Methods

After reading the previous section, you are probably wondering why go through all the trouble of using get and set methods when it would be much easier to just access the data directly like this?

#!/usr/bin/perl -w

use SavingsAccount;

my $jonesAccount = SavingsAccount->new();

print out the saving account interest rate

my $intRate = $jonesAccount->{INTEREST_RATE};

print "The Jones account interest rate is $intRate.";

change Jones' interest rate to a new value

$jonesAccount->{INTEREST_RATE} = 0.06;

exit;

The danger in doing it this way is that if we are writing the class for someone else to use, they may assign an interest rate that has the wrong format. For example, your class may expect interest rates to be formatted so that six percent has the internal representation of 0.06. However, someone using your class may try to assign 6% interest rate this way

$jonesAccount->{INTEREST_RATE} = 6;

or this way

$jonesAccount->{INTEREST_RATE} = '6%';

or even this way

$jonesAccount->{INTEREST_RATE} = 'six percent';

If a programmer tries to modify the object's data directly and makes a mistake like one of the above examples, it may make the program crash without an error message that reveals the programmer's mistake. Worse, in the first case, the programmer has assigned an interest rate with a 6 instead of 0.06, which the object will interpret as a 600% interest rate. The result is that the customer will be happy when they get their next bank statement and the programmer be fired once the auditors catch up with him.

This potential source of error can be eliminated by you, the class's author, by writing a set_interest_rate() method that will check the interest rate and produce an error message if the number doesn't look right.

sub set_interest_rate {

my $self = shift;

my $newRate = shift;

Rate can't contain letters

if($newRate =~ /\w/) {

die "Interest rate must be a number: $!";

}

If it contains a %, try to fix it

if($newRate =~ /^\d+%$/) {

$newRate =~ s/%//;

$newRate /= 100;

}

We expect a format of #.##. If it doesn't

have this format, send a warning just in case

unless($newRate =~ /^\d*\.\d\d/) {

print "The new interest rate of $newRate\n";

print "doesn't have the expected format.\n";

}

$self->{INTEREST_RATE} = $newRate;

return;

}

13.5 Using The Constructor to Assign Object Data

In our savings account class, the interest rate and balance are hard coded in the constructor. If these are not the wanted values for a given instance of the class, we can allow the user to change them with appropriate set methods.

package SavingsAccount;

sub new {

my $self = {};

$self->{INTEREST_RATE} = "0.05";

$self->{BALANCE} = "0.00";

bless $self;

return $self;

}

Alternatively we can allow the user to assign them when the object is instantiated by having the programmer assign them by giving arguments to the constructor.

my $jonesAccount = SavingsAccount->new("0.06", "500");

To do this, the constructor would have to be modified like so.

sub new {

my $self = {};

my $class = shift;

$self->{INTEREST_RATE} = shift;

$self->{BALANCE} = shift;

bless $self;

return $self;

}

Notice that the constructor requires three calls to shift for only two arguments. Like class methods, the first element @_ contains an automatic value. However, unlike other methods, the first element is not an object reference. It can't be since when new() is called, the object has not been created yet (not until the bless line). So what does the first element of @_ contain? It contains the name of the class. Knowing the class name can be useful when dealing with derived classes or inheritance. However, inheritance is an advanced subject that we won't deal with here so you can ignore the class name when writing your constructors.

13.6 Net::FTP

To demonstrate some of the concepts we've learned, I'll show you how to use a popular object-oriented module, Net::FTP. Net::FTP will let you automate a ftp session with Perl. This can be particularly useful if have a lot of files to put or get, or if you want to write a utility that will transfer files late at night when network traffic is light. If Net::FTP is installed on your machine, you can read the built-in documentation with perldoc

$>perldoc Net::FTP

Note that Net::FTP has not been installed on linux.cschabot.org (I'm working on that). You can also read the documentation at

http://www.perldoc.com/perl5.6/lib/Net/FTP.html.

#!/usr/bin/perl -w

#

This program downloads the latest version of Net::FTP

from cpan.org. cpan.org only allows 25 anonymous

connections so it can be impossible to login with

an interactive session during the day. This program

will try to login every 5 minutes. Once it connects,

it will download the tar file.

use strict;

use Net::FTP;

Create an FTP object that represents one connection to

cpan.org. We could create multiple FTP objects if

we wanted to have simultaneous connections to one or

more ftp servers.

The argument to new() is the name of the ftp server.

my $ftp = Net::FTP->new("ftp.cpan.org");

Try to login to the ftp server. If refused, wait 300

seconds and try again. Keep trying until we are in.

The arguments to login are the username and password.

until($ftp->login("anonymous", "fellers@chabot.edu"))

sleep 300;

}

Change to the directory containing the FTP modules.

$ftp->cwd("/pub/CPAN/modules/by-module/Net");

Get the latest copy of Net::FTP

$ftp->get("Net-FTP-Common-2.9.tar.gz");

Disconnect from CPAN.org

$ftp->quit;

exit;

13.7 Exercises

None yet.

Page 9 of 9

