CSCI44A Programming Perl I

Lecture 12

11/20/2002

12 Packages and Modules

In an earlier lecture, we learned how you could modularize your code by using subroutines. We also learned that you could put your subroutines into a common file that all your programs can call so that you only have to write those subroutines once.

More recently, we also learned how we could localize variables with the my declaration so that our main code and subroutines can use common and intuitive variables names like $i, $count, and $data, and have the confidence that when subroutine1 writes to its own $data, it won't change $data in subroutine2 (unless, of course, we intended it to). When we do this we can say we are controlling variable scope or the privacy of variables.

If we are writing a lot of subroutines into multiple files, we can have better control of variable scope by using packages or modules. By using packages or modules, we also gain the advantage of controlling the subroutine name space so we can reuse subroutine names across packages. By creating a package or module, we create a namespace where all variable and subroutine names are local to the package.

In this lecture, I will show you how to create a simple package and simple module and show you how to use these in your code. First we will talk about packages.

12.1 Packages: The Basics

Here is a very elementary package saved to a file called package1.pl

package package1;

$variable1 = 1;

sub demo {

print "Running sub demo in package1.\n";

}

return 1;
The package keyword defines the package name. In this case, I've named the package package1 and the file package1.pl but they do not have to have the same name. In a package you can have any combination of variables and subroutines. Here I have one of each. Lastly, the package ends with a return statement that returns 1. This last bit is especially important because when your program tries to load a package with a require, Perl goes through each line of the package looking for errors that would keep the program from running. If there aren't any problems, require expects the return value to be 1 (actually anything except undef or 0). A bad return value will cause the code to stop.

Packages are loaded into memory by calling the require operator on the file containing the package at the beginning of the main program. The way you access a packages subroutines and variables within your code is to use the package delimiter, ::, with this syntax:

package_name::subroutine

package_name::variable

This is how you use it in practice.

#!/usr/bin/perl -w

require 'package1.pl';

print "$package1::variable1\n";

package1::demo();

exit;

The purpose of prepending the package names to each subroutine and variable name is clearer if we have two or more packages. Suppose we had another package, package2

 package package2;

$variable1 = 1;

sub demo {

print "Running sub demo in package2.\n";

}

return 1;
We can access each packages variables and subroutines like this.

#!/usr/bin/perl -w

require 'package1.pl';

require 'package2.pl';

$variable1 = 3;

print "$package1::variable1\n";

package1::demo();

print "$package2::variable1\n";

package2::demo();

print "$variable1\n";

print "$main::variable1\n";

exit;

If you look closely at the last code, you'll notice that that in the last two print statements, I print out $variable1 and $main::variable1. $variable1 is just main's $variable1; it's not one of the $varible1's in package1 or package2. $main::variable is a synonym for that same variable. Perl thinks of the main code as a package too, a package called main, so you can prepend all of main's variables and subroutines with main. If you leave out main:: before a variable or subroutine name, it assumes you mean main.

12.2 Packages II: BEGIN and END

When you load a package, it may need to do some initialization steps before you can use it. The package may need to initialize some variables, connect to a database, check to see if other packages that are needed are present, etc. This initialization code can be run from a package subroutine that you call early in your code.

Alternatively, you can put a BEGIN block in your package just after the package keyword. Code in the BEGIN block will be run as soon as the package is loaded, even before Perl finishes parsing the rest of the package file. If you load several packages, each with a BEGIN block, they are run in the order in which they are loaded. These BEGIN blocks are also known as package constructors.

Likewise, Perl also lets you put an END block at the end of the package. As you might guess, code in END blocks are run at the end, that is, at the end of the main programs execution. You can use this part to put in code to free up memory, close files they may be open, disconnect from databases, etc. If you have loaded multiple packages, each with END blocks, the END blocks are run in reverse order from the order the packages where loaded. These END blocks are also known as package destructors.

package package1;

BEGIN {

...

some initialization code

...

}

$variable1 = 1;

sub demo {

print "Running sub demo in package1.\n";

}

END {

...

some clean up code

...

}

return 1;
12.3 Modules I: The Basics

In a nutshell, packages are just a convenient way to define a variable and subroutine namespace.

Modules are like packages but with extra features that make the much more powerful. The two most important features that modules have are 1) the ability to export variable and subroutine names and, 2) support for object-oriented programming.

As far as creating a rudimentary module, there are a few rules that must be followed.

1. The module is declared with the package keyword followed by the module name.

2. The file name of the file containing the module must match the module name and must end with the *.pm extension.

3. Only one module may appear in a file (otherwise rule two would be broken). Unlike modules, you can put multiple packages in one file, and you can even put your packages in the same file as your main code.

4. Modules are loaded with the use operator. The argument to the use operator is the module name (don't put the *.pm extension!).

5. By convention, module names start with a capital letter.

Here is a bare bones module called BasicMod saved to a file called BasicMod.pm.

package BasicMod;

BEGIN { }

sub test {

print "BasicMod works!\n";

}

return 1;

END { }

Right now the BasicMod looks just like a package because we haven't used any module features yet.

12.4 Modules II: Exporting Symbols

When we talk about symbols in computer programming, we are referring collectively to the names of things like variables, subroutines, packages, filehandles, etc. By exporting symbol, what we are saying that the symbols are exported from a module to main. What I just said probably sounds like gobbledygook so let me illustrate this concept with an example.

Suppose you have a module call LotteryNumberPicker.pm and in it, it has a subroutine called pickAWinner() that will generate (hopefully) your winning lottery numbers. Your main code might look something like this.

#!/usr/bin/perl -w

use LotteryNumberPicker;

my @numbers = LotteryNumberPicker::pickAWinner();

print "Pick these numbers and get ready to be rich!\n";

print "@numbers \n";

exit;

Notice that the module subroutine name is preceeded by the module name and double colon :: just like we learned with packages.

Typing the module name for each invocation of one of a module's subroutines is not to big of a hassle unless, of course, our code is very long and has man calls to LotteryNumberPicker's subroutines. If the module contains subroutine names that are likely to be unique, or at least likely not to clash with other subroutine names that might be imported from other modules, we can export the subroutine name so that we don't have to put in the module name every time we call the pickAWinner() subroutine. If our LotteryNumberPicker.pm module is set up to export the pickAWinner() subroutine name, our main code would now look like this.

#!/usr/bin/perl -w

use LotteryNumberPicker;

my @numbers = pickAWinner();

print "Pick these numbers and get ready to be rich!\n";

print "@numbers \n";

exit;

The only difference in the code above is that we don't have to prepend the module name when we call pickAWinner(). It's in the module where we do the work exporting the symbol.

package LotteryNumberPicker;

BEGIN {

use Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(&pickAWinner);

}

sub pickAWinner {

....

lottery number generator code

....

}

return 1;

END { }

All the new stuff is in the BEGIN block. We haven't covered the qw() operator yet so let's cover that first. qw() is known as the quote words operator. It takes a string, splits them on the white spaces, and returns a list. These two lines are equivalent

@a = ("one", "two", "three");

@a = qw(one two three);

By convention, qw() is used to assign special arrays, like @ISA and @EXPORT above, in modules.

The use Exporter line tells Perl to load the Exporter modules when the LotteryNumberPicker module is loaded. Exporter.pm contains methods (subroutines) to export symbols. The @ISA array tells Perl to inherit the Exporter methods so that LotteryNumberPicker can use the exporter methods as if they were its own. If you already know object-oriented programming, you might be wondering if @ISA is related to the is-a concept in OOP. It is. If none of the discussion in this paragraph makes sense, you can just type the first two lines as is for a majority of your modules where you want to export symbols.

The item that you want to know about is the third line in the BEGIN block

@EXPORT = qw(&pickAWinner);

Any variable or subroutine name that appears in the qw() list is exported to the code that loaded the module. If a module has many variables and subroutines, you can put them all in there if you like, or you can just but the few, most used ones. Most people prefer the later as exporting too many symbols can pollute the namespace, that is, an exported variable or subroutine may accidentally override one already in your main code. The more symbols you export, the more likely you are going to have this problem.

12.5 Modules II: Preventing Symbol Exportation

If you are using a modules that automatically exports symbols that clash with names that you are already using, you can turn off symbol exportation by appending a () after the module name when you load the module with the use keyword.

Here's how I would turn off LotteryNumberPicker.pm's automatic symbol exportation.

#!/usr/bin/perl -w

use LotteryNumberPicker();

my @numbers = LotteryNumberPicker::pickAWinner();

print "Pick these numbers and get ready to be rich!\n";

print "@numbers \n";

exit;

12.6 Modules III: Optional Symbol Exportation

If you are writing a module that others will use, you may designate symbols that may be exported, but they will only be exported if the code loading the module specifically names the symbols to import.

Symbols that may be exported are put into an array call @EXPORT_OK.

package Demo;

BEGIN {

use Exporter;

@ISA = qw(Exporter);

@EXPORT_OK = qw(&sub1 &sub2 &sub3); # 3 subroutines to export

}

....

the subroutines

...

return 1;

In the code loading the module, you need to explicitly list the items you wish to import. For example, if you are using the Demo module and will only use sub2(), don't import sub1() and sub3().

#!/usr/bin/perl -w

use Demo qw(&sub2);

sub2();

exit;

12.7 OOP Perl I: A Very Brief Introduction to Object-Oriented Programming (OOP) with Perl

In this class we won't learn very much object-oriented programming. That's reserved for Perl II. However, most of the Perl modules in the public domain are object-oriented so it is useful to at least learn some concepts. Fortunately, will just a very little OOP knowledge we can use most of the modules we might encounter.

For those who have had no exposure to OOP, in a nutshell, OOP is a programming methodology where related data and subroutines (called methods in OOP) are grouped together into objects. One of the major paradigms of OOP is that data and methods should be encapsulated within an object. Encapsulation means that the most (maybe all) of the data and methods of an object are hidden by the user of that object. The object's data and methods can only be accessed through a well defined interfaces set by the object, or rather the object's author.

A common analogy used to illustrate encapsulation is a calculator. The calculator is an object with two interfaces, the keypad and the display. We can enter numbers, the calculator will do some number crunching, and our answer will show up on the display. As long as the answers are correct, we don't care about the details of how the calculator stores temporary numbers, moves data from one chip to another, or formats the numbers for the LCD display. Because we don't care about the calculator's internal workings, the engineer is free to do things like change the chips inside or reprogram the ROM to speed up calculations just as long as our keypad and display work the way we expect.

Similarly, we can have a Perl calculator object that can accept some numerical input via a few documented methods and return the answer(s). The calculator object may have many methods but most might be doing things that we wouldn't necessarily need to have access to. Such hidden methods might perform tasks like calculate intermediate results, load tables from the disk, divide up large calculations and distribute small tasks to other CPUs (on a multi-processor machine), etc. Data can also been hidden so that the programmer using the object doesn't accidentally change variables that the object maybe using.

OOP can be very formal. If you've taken a Java or OOP C++ course, you are already familiar with terms like class, encapsulation, inheritance, polymorphism, and overloading. These terms also apply to OOP Perl. However, if you come from the Java or C++ world, you'll find Perl's object-orient programming style very informal. Perl's object-oriented programming revolves around a few key concepts: classes, objects, methods, and inheritance. These terms are defined as follows:

· A class is a package that can provide methods.

· A method is a subroutine built into a class or object. A method gets an object reference or class name passed to it as its first argument.

· An object is a referenced item that, unlike other references, knows what class it's part of. You create objects from classes.

· Inheritance is the process of deriving one class, called the derived class, from another, the base class, and being able to make use of the base class's methods in the derived class.

12.8 OOP Perl II: A Basic Class

Here is a very simple class called Class1 saved to a file called Class1.pm:

package Class1;

sub new {

my $self = {};

bless($self);

return $self;

}

return 1;

A class is used to create objects, it serves as a template. This class only has one method called new. The new method is a special method known as a constructor. A constructor is used to create an object and to initialize things, like variables.

Now let's walk through the constructor line by line. The first line

my $self = {};

creates a hash reference with an anonymous hash (see the last section of this lecture for a discussion of anonymous hashes). This hash reference will be converted into an object reference that will point to the object being created. By convention, this reference is called self because it's a reference that an object uses to point to itself.

The second line is very important.

bless($self);

bless will take an ordinary hash reference and label the anonymous hash that the reference points to, as an object of class Class1. Without calling bless, the anonymous hash remains a hash. By calling bless, the anonymous hash becomes an object.

The last line

return $self

returns the object reference (remember, it used to be a hash reference but bless turned it into an object reference) to the code that instantiated (i.e. created) the object. You main code needs this reference so it can manipulate the object.

To create an object of type Class1 in your main code you invoke the class's new method like this.

use Class1;

my $object = Class1->new();

$object is a reference to the new object. That's all you need to do to create your first object!

Notice that when we called Class1's new method, we used the arrow operator, ->, instead of the double colon, :: like this Class1::new(). In this case, we could have created an object with Class::new(), however, when dealing with derived classes, the arrow operator will confer some advantages that we won't cover here. The point is to use the arrow operator when creating objects.

12.9 OOP Perl II: Methods

You can add methods to your class by simply adding subroutines to the file. Here I've added a method called printMessage() that will let a Class1 object print a message.

package Class1;

sub new {

my $self = {};

bless($self);

return $self;

}

sub printMessage {

print "Hello World!";

}

return 1;

You call an object's method by using the object reference, followed by the arrow operator, and ending with the method name.

use Class1;

my $object = Class1->new();

$object->printMessage(); # prints 'Hello World!'

exit;

12.10 Anonymous Arrays and Hashes

In Lecture 9 we learned how to get a reference to an array or hash.

my @a = ();

my $ar = \@;
$ar is a array reference

my %h = ();

my $hr = \%h;
$hr is a hash reference

We also learned how access array and hash data using these references.

print $ar->[3];
print the contents of the 4th element

print $hr->{'jones'};

print the value associated with the 'jones' key

Since we can access and store array and hash data using references, we don't necessarily need to create an array or hash before creating an array reference or hash reference. We can create an array reference or hash reference using an anonymous arrays and hashes.

An anonymous array is denoted with square brackets, []. When you use these brackets, it creates an empty array in memory and returns a reference pointing to this array. You can get an array reference to an empty array like this.

my $ar = [];

If you want to initialize the array when the reference is created, you can put a list of values between the square brackets.

my $ar = ['one', 'two', 'three'];

print $ar->[1];
prints 'two'

Don't get the brackets of the anonymous array confused with the brackets used to access individual scalars in the array.

Similarly, hash references can be initialized with curly braces.

my $hr = {}; # reference to an empty hash

Create a hash reference and set some key-values

my $hr = { 'one' => 1, 'two' => 2, 'three' => 3 };

print $hr->{'two'};
prints 2

12.11 Exercises

No exercises in this lecture.

Page 8 of 12

