CSCI44A Programming Perl I

Lecture 11

11/12/2002

11 Process Management

When we learned about subroutines, we learned how to modularize our code to both make our coding tasks easier, and more importantly, to be able to import subroutines in files that another coder may have written. Employing Perl code that already exists, instead of rewriting our own, is known as code reuse, and is usually the best way to develop your software.

If you are familiar with Unix, you know there are many utilities that can handle such tasks as manipulate files (mv,cp, rm), get machine statistics (ps, top), monitor your computer network (ifconfig, netstat), etc. Many of the little programs have Perl counter-parts, and for the ones that do not have a version in Perl, they are usually simple enough to write in Perl in short order.

However, why reinvent the wheel? It would be much easier to tell Perl to use these well known programs. In this lecture I will show you how.

11.1 System I: Introduction

Any shell command or executable that can be run from the command line can also be run from within Perl using the system() operator. The argument(s) to the system() operator is/are the commands and arguments as you would use them on the command line.

Let’s start with a simple example. The Unix date command will print out to standard out the date and time of the computer’s internal clock.

$>date

Tue Nov 12 10:31:14 PST 2002

In you Perl code, you could invoke date like this

#!/usr/bin/perl –w

system(“date”);

Ok, so now you ran the date command but what happens to the output? You might think that you should write your code like this to get the date

my $date = system("date");

but this is wrong.

system() returns the exit status of the command you ran. Most Unix commands will return 0 if the command ran successfully and something other than 0 if the command failed or had some problem that you should know about.

So what happened to the output of date? Well, if you didn't do anything special, date will still print the date to standard out and so it will show up on your terminal if you are running your Perl program interactively. If you want to capture the date, you could direct the output to a file

system("date > date.out");

Also, since system() returns the exit status of the command, we can also use die to stop the program if there is a problem.

system("date > date.out") && die "Cannot create date.out:$!";

Notice that we use && instead of || because system() will return 0 if the operation is successful.

11.2 System II: Arguments

If the Unix command you are calling with system() has arguments, you can call it in two ways. The first is to treat the command and it's arguments as a single string.

system("mv ./data/data.txt ./archive/data.txt");

Or you can pass the command and it's arguments as separate arguments to system().

system("mv", "./data/data.txt", "./archive/data.txt");

When you use multiple arguments, system() assumes that the first argument is a program to run, and the remaining arguments are arguments to be passed to the program that system() is calling.

Of course you can use Perl variables in the arguments. These two calls to system() are equivalent

my $cmd = 'mv';

my $old = './data/data.txt';

my $new = './archive/data.txt'.;

system("$cmd $old $new");

system($cmd, $old, $new);

11.3 System III: Environment

In the above system() examples, we didn't have to specify the full path to date and mv; Perl knew the path to these programs. But how?

Perl has a hidden hash called %ENV containing environmental variables such as the search path (the list of directories to search for executables). If date and mv are in one of these directories, system() should run fine. If not,you will get an error. Run this foreach loop to see the default setting for your Perl programs.

foreach my $key (sort keys %ENV) {

print "$key = $ENV{$key}\n";

}

Here's a partial list of the output when I run this foreach loop on my computer.

HOME = /home/fellerrs

SSH_ASKPASS = /usr/libexec/openssh/gnome-ssh-askpass

LD_LIBRARY_PATH = /usr/local/lib

MANPATH = /usr/local/man:/usr/openwin/share/man:/usr/openwin/man:/usr/share/man:/usr/dt/share/man:/usr/dt/man:/usr/bin/man:/usr/man

OSTYPE = linux-gnu

EDITOR = emacs

MAIL = /var/spool/mail/fellerrs

LESSOPEN = |/usr/bin/lesspipe.sh %s

PWD = /home/fellerrs

LANG = en_US

USER = fellerrs

VISUAL = emacs

LOGNAME = fellerrs

HOSTNAME = pcloud

SHLVL = 1

INPUTRC = /etc/inputrc

_ = /usr/local/bin/perl

PERL5LIB = /home/fellerrs/lib/perl5/

PATH = /usr/local/bin:/usr/local/bin/sparc-sun-solaris2.6:/bin:/usr/bin:/usr/ucb:/usr/ccs/bin:/etc:/home/fellerrs/bin:/usr/X/bin:.

These values are inherited from the Unix shell when you run your Perl programs from the command line. You can modify the values of the hash, say for example, to add more directories to the search path.

11.4 System IV: Running time

When you run a command from the Unix command line, you don't get the command line back until the program has finished running. For example, if you run an exhaustive search on the command line

$>find / -find '*.c' -print > cfiles.list

you may have to wait a long time before you can type another command.

If you append an ampersand, &, to the command,

$>find / -find '*.c' -print > cfiles.list &

the Unix shell will run the command in the background and immediately return the command prompt so you can go and do more work.

system() works the same way. If you run a command that takes a long time to complete, Perl execution will stop at the system() call and wait until the command is completed.

system("find / -find '*.c' -print");

print "Next\n";
Takes a long time before this prints

If you put an ampersand at the end of the system() argument, Perl will continue with the next statement almost immediately.

system("find / -find '*.c' -print &");

print "Next\n";
This prints out right away

11.5 Exec

exec() is nearly identical to system() except is has one very important difference. If the exec() call succeeds, the Perl program that called exec() dies.

Why would you want Perl to do this? Well, you may have a job where you have to run one of several executables, with the program choice dependent on a number of factors such as time of day, disk space, the existence of certain data files, etc. If this task is repetitive, you might want to automate the program selection process with a little Perl program. Once your Perl program has figured out which executable to run, it can start that executable and quit since it has finished its task.

11.6 Backquotes

Another way to start a process in Perl is to use backquotes (also known as backticks:`). The advantage of backquotes is that the output of the command can be immediately stored in a Perl scalar or array.

Here's how we can get the output of date and put it into a scalar.

my $date = `date`;

The ps command will return a list of processes running on the computer, one process per line (man ps if you are not familiar with the Unix command). We can get a list of each process this way

my $processes = `ps`;

If we use the backquotes in an array context, Perl will split the output, using the newline character as the separator, and put one line per array element.

my @processes = `ps`;

foreach my $process (@processes) {

print "$process\n";

}

We could have also written the previous example like this.

foreach my $process (`ps`) {

print "$process\n";

}

11.7 Using open() to create a process

In a previous lecture, we learned how to use open() to establish a connection with a file. We created a filehandle that we can read from using this syntax

open(FH, "<data.txt");

and a filehandle we can write to using

open(FH, ">data.txt");

Well, we can also use open() to establish a connection with a process using a pipe, |. Let's refresh our memory on how to use pipes on the Unix command line. This example will run ps, and pipe the output to grep. grep will take the output from the pipe and print out the processes running Java.

$>ps -A | grep java -

In Perl, to capture the output of ps using open(), you would write it like this

open(PS, "ps -A |");

The pipe on the right side tells Perl that you are capturing the output from ps. PS is a filehandle that connects to the pipe. We can store the output of ps using this familiar syntax

@psOutput = <PS>;

You can duplicate the above ps/grep command line example with a little bit of Perl that might look something like this

open(PS, "ps -A |");

while(<PS>) {

print if(/java/);

}

You can also use open() and pipes to send output to a process. This example opens a connection to lpr, the program that sends data to the printer.

open(LPR, "| lpr");

We can modify the previous example to send all of the lines that contain 'java' to the printer

open(PS, "ps -A |");

open(LPR, "| lpr");

while(<PS>) {

if(/java/) { print LPR $_; }

}

close(LPR);

close(PS);

The command line equivalent for this Perl example is

$>ps -A | grep java - | lpr

11.8 Exercises

1. Run this command on the Linux server:

$>ps -Af

The output will look something like

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Oct21 ? 00:00:05 init [3]

root 2 1 0 Oct21 ? 00:00:00 [keventd]

root 3 1 0 Oct21 ? 00:00:44 [kswapd]

root 4 1 0 Oct21 ? 00:00:00 [kreclaimd]

root 5 1 0 Oct21 ? 00:00:47 [bdflush]

root 6 1 0 Oct21 ? 00:00:31 [kupdated]

root 7 1 0 Oct21 ? 00:00:00 [mdrecoveryd]

root 592 1 0 Oct21 ? 00:00:03 syslogd -m 0

root 597 1 0 Oct21 ? 00:00:00 klogd -2

rpc 611 1 0 Oct21 ? 00:00:00 portmap

rpcuser 626 1 0 Oct21 ? 00:00:00 rpc.statd

root 700 1 0 Oct21 ? 00:01:29 [rpciod]

root 701 1 0 Oct21 ? 00:00:00 [lockd]

root 781 1 0 Oct21 ? 00:00:00 /usr/sbin/automount --timeout 18

root 783 1 0 Oct21 ? 00:00:00 /usr/sbin/automount --timeout 18

daemon 879 1 0 Oct21 ? 00:00:00 /usr/sbin/atd

root 897 1 0 Oct21 ? 00:00:08 /usr/sbin/sshd

Write a program that will take the output from ps and print out the UID, PID, and CMD columns of the processes that you want to see. The program should take two arguments. The first argument should be 'UID', 'PID', or 'CMD'. The second argument should be a string that is searched to see if a particular line from ps should be printed out. The string should only be searched on the field specified with the first argument.

Here are some examples of how it should work (assume the program is called psfilter.pl)

$>psfilter.pl UID fellerrs

UID PID CMD

fellerrs 17860 -bash

$>psfilter.pl CMD ora

UID PID CMD

padmin 1124 ora_pmon_PCLOUD

padmin 1126 ora_dbw0_PCLOUD

padmin 1128 ora_lgwr_PCLOUD

padmin 1130 ora_ckpt_PCLOUD

padmin 1132 ora_smon_PCLOUD

padmin 1134 ora_reco_PCLOUD

padmin 1170 /blackstone/usr/local/oracle/pro

padmin 1345 oraclePCLOUD (LOCAL=NO)

padmin 1657 oraclePCLOUD (LOCAL=NO)

padmin 1940 oraclePCLOUD (DESCRIPTION=(LOCAL

padmin 2059 oraclePCLOUD (DESCRIPTION=(LOCAL

padmin 3842 oraclePCLOUD (DESCRIPTION=(LOCAL

padmin 3854 oraclePCLOUD (DESCRIPTION=(LOCAL

padmin 26743 oraclePCLOUD (DESCRIPTION=(LOCAL

padmin 11674 oraclePCLOUD (DESCRIPTION=(LOCAL

Write two versions of this program. One version should use backquotes to get the process list from ps. The other should use open() with a pipe to get the list. Hint: modularize your code so that two programs can use the same subroutines.

Page 5 of 7

