CSCI44A Programming Perl I

Lecture 10

11/5/2002

10 Files and Directories

10.1 The -x File Tests

In earlier lectures we learned to use the die operator when we attempt to open a file. If the open operator fails, die will cause the program to quit and print out an error message telling us why the program couldn't open the file. However, there are many reasons why we couldn't open a file, maybe the file we want isn't there, and instead of just dying, perhaps we want the program to do some else like open an alternate file.

Before attempting to open a file, there are tests you can do given on a file name, such as seeing if a file exists, if a file is a text or binary file, if the file is owned by you, how old the file is, etc. The way you test a file is to use one or more of the file test operators. Here is a partial list of them

-r
File or directory is readable

-w
File or directory is writable

-x
File or directory is executable

-o
File or directory is owned by user

-e
File or directory exists

-z
File exists and has zero size

-s
File or directory exists and has nonzero size

-f
Entry is a plain file

-d
Entry is a directory

-l
Entry is a symlink

-T
File is plain text

-B
File is binary

-M
Modification age in days

-A
Access age in days

To test a file, just put one of the above tests in front of the file to test. Here's how you would test if a file exists before opening it and open an alternate file if the first file is not there.

$firstChoice = "fileA.txt";

$secondChoice = "fileB.txt";

if(-e $firstChoice)

{

open(FH, "<$firstChoice") or die "$!";

}

elsif(-e $secondChoice)

{

open(FH, "<$secondChoice") or die "$!";

}

else

{

die "Can't find any files: $!";

}

You can combine the tests if you want. This example does the same as the previous example except that we now also test to see if the file is readable before attempting to open it.

$firstChoice = "fileA.txt";

$secondChoice = "fileB.txt";

if(-e $firstChoice && -r $firstChoice)

{

open(FH, "<$firstChoice") or die "$!";

}

elsif(-e $secondChoice && -r $secondChoice)

{

open(FH, "<$secondChoice") or die "$!";

}

else

{

die "Can't find any files: $!";

}

10.2 Moving Around the Directory Tree

When you use a file test on a file or try to open a file, and you don't have a path in the file name, Perl looks for the file in the current directory. Here Perl is trying to open a file called fileA.txt in the current directory

open(FH, "<fileA.txt")

The current directory is the directory you start your Perl program in. If you are in /home/jones/csci44a, Perl will look for /home/jones/csci44a/fileA.txt. If fileA.txt is in /home/jones/perl instead, the open is going to fail.

You could fix the problem by specifying the path in the open statement

open(FH, "</home/jones/perl/fileA.txt");

Or you could Perl change the current working directory with the chdir() operator.

chdir("/home/jones/perl");

open(FH, "<fileA.txt");

Actually you should use the die operator with chdir() just to be safe.

chdir("/home/jones/perl") or

die "Can't move to /home/jones/perl: $!";

open(FH, "<fileA.txt") or

die "Can't open fileA.txt: $!";

10.3 Globbing

When you on the Unix command line, you can get a list of all of the files and subdirectories with ls. You can use wildcards like * and ? to show only some of the files or directories. For example, to only display the file in /etc that begin with 'host' in the file name, you would do this

$>ls /etc/host*

In Perl you can do the same thing to get a list of files and directories using a method called globbing. Globbing means expanding a wildcard into a list of names (e.g. /etc/host* is a glob of all the files that begin with 'host' in /etc). To get a list you can use, put the glob between angle brackets.

#

print out the name of all files and directories in /etc

#

@list = </etc/*>;

foreach (@list)

{

print "$_\n";

}

10.4 Deleting a File

Deleting a file is easy. Just run the unlink() operator on the file.

unlink("fileA.txt");
deletes fileA.txt

You can use a glob to delete a whole class of files too.

unlink(<*.txt>);
delete all of the file that end

with '.txt' in the current directory

10.5 Renaming a File

You can rename a file using the rename() operator. This will change the name of fileA.txt to oldData.txt.

rename("fileA.txt", "oldData.txt");

You can also move files by including the path in the rename() arguments like this

rename("fileA.txt", "./data/fileA.txt");

10.6 Making and Removing Directories

The Perl operators to make and remove directories are mkdir() and rmdir(), respectively. mkdir() take the directory name and permissions as the arguments. This example will make a directory called 'data' and make it readable and writable to everyone.

mkdir("data", 0777);

The permission setting, 0777, is equivalent to the convention you would use with the shell chmod command. Read up on chmod if you want to change the permissions to something that will give you more privacy.

Here's how to remove a directory called 'data'.

rmdir("data");

10.7 Exercises

1. For this exercise, you will use the electronic dictionary from the homework in Lecture 6. Write a program that will read in all of the words and print out the words to different files. The file that each word will be printed to is a file that has the same name as the first two letters of the word. For example, if the words like the, those, and thesis should be printed to a file called th.txt.*

Your program should also make 26 directories, one for each letter of the alphabet, and put the text files in those directories. For example, the directory './t' will contain files like ta.txt, te.txt, th.txt, etc.

* For simplicity, ignore single letter words like 'a' and 'I'.

2. Write a program that will take a word as input and check through the files created in exercise 1 to see if it exists. If the word does exist, the program should give the option to delete it. If you delete it, the program should rewrite the text file without the word deleted. If the last word of a file is being deleted, have your program erase the file. If the word doesn't exist, the program should ask you if you want to add the word. If the word is to be added, the word should be appended to the correct file.

Page 3 of 4

